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(ABSTRACT)

Because of the inherent complexity of fiber-reinforced laminated composites, it can

be challenging to manufacture composite structures according to their exact design

specifications, resulting in unwanted material and geometric uncertainties. In this

research, we focus on the deterministic and probabilistic stability analysis of lam-

inated structures subject to subtangential loading, a combination of conservative

and nonconservative tangential loads, using the dynamic criterion.

Thus a shear-deformable laminated beam element, including warping effects, is

derived to study the deterministic and probabilistic response of laminated beams.

This twenty-one degrees of freedom element can be used for solving both static and

dynamic problems. In the first-order shear deformable model used here we have

employed a more accurate method to obtain the transverse shear correction factor.

The dynamic version of the principle of virtual work for laminated composites is

expressed in its nondimensional form and the element tangent stiffness and mass

matrices are obtained using analytical integration. The stability is studied by giving

the structure a small disturbance about an equilibrium configuration, and observing

if the resulting response remains small.

In order to study the dynamic behavior by including uncertainties into the

problem, three models were developed: Exact Monte Carlo Simulation, Sensitivity-

Based Monte Carlo Simulation, and Probabilistic FEA. These methods were inte-

grated into the developed finite element analysis. Also, perturbation and sensitivity

analysis have been used to study nonconservative problems, as well as to study the

stability analysis using the dynamic criterion.
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Chapter 1

Analysis of Laminated Structures

with Uncertain Properties

The increased use of fiber-reinforced laminated composites has created a new

interest in the analysis of laminated structural elements such as laminated beams,

plates, and shells. A better understanding of the structural behavior of these com-

posite structures is much needed. Mechanical and physical properties of laminated

composite structures can become uncertain due to changes in various factors like

fiber orientations, curing temperature, pressure and time, voids, and impurities

among others. Thus, for this kind of material it is extremely important to identify

and use the most appropriate model of uncertainty.

Although researchers in the past have studied the kinetics of fiber-reinforced

laminated composites, in the present work a new twenty-one degree of freedom beam

element is derived to perform static, dynamic, and stability analysis through the

finite element nonlinear analysis. This encompasses the first goal of this research.

The second goal is the probabilistic study of the structural behavior by includ-

ing uncertainties into the problem through the probabilistic finite element method

(PFEM), exact Monte Carlo simulation (EMCS), and sensitivity-based Monte Carlo

simulation (SBMCS).

The purpose of this chapter is to: (i) introduce uncertainties in laminated com-

posites, (ii) present previous work done on finite element nonlinear analysis of

laminated beams and PFEM, and (iii) state the motivation and explain the scope



1.1. ANALYSIS OF LAMINATED COMPOSITES

Figure 1.1: Fiber-reinforced laminated composites.

of the present work.

1.1 Analysis of Laminated Composites

The composites considered here are fiber-reinforced laminated composites, a hy-

brid class of composite materials involving both fibrous composite materials and

lamination techniques. Fiber-reinforced laminated composites are of great interest

to aerospace engineers because these composites can be tailored to best match the

design requirements of a specific structural application, while allowing structural

components to remain lightweight. These laminated structures are obtained by

stacking two or more laminae with their fibers oriented in different directions, as

shown in Fig. 1.1.

The analysis of fiber-reinforced laminated composites is far more complex when

compared to conventional materials because composites are inhomogeneous through

the thickness and generally anisotropic. Anisotropic materials exhibit directional

characteristics and thus bring shear-extension coupling into the analysis. When

laminates are unsymmetrically stacked, bending-stretching coupling must be in-

cluded in the analysis. Moreover, differences in elastic properties between fiber
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filaments and matrix materials lead to inplane-shear coupling. These couplings

only add further complexity to the solution.

The high ratio of inplane modulus to transverse shear modulus makes the clas-

sical lamination theory, which neglects the effect of out-of-plane strains, inadequate

for the analysis of multilayer composites (Mallikarjuna and Kant, 1993). In such

a case, one should use a theory which includes transverse shear deformation; an

example is the first order shear deformation theory (FSDT). In fact, the presence

of shear forces introduces shear stresses in a beam which may cause appreciable

angular deformation of the beam. As a consequence, transverse normals no longer

remain normal after deformation. In laminated composites, such a behavior can be

very important. Because laminated composite materials have very low transverse

shear modulus compared to their in-plane moduli, the classical laminated theory

will under-predict deflections and over-predict frequencies and buckling loads (Singh

et al., 1991).

The FSDT, which ignores the effects of cross-sectional warping, leads to an

unrealistic (constant) variation of the transverse shear stress through the laminate

thickness. Higher-order shear deformable theories (HSDT) do not require the use

of shear constants because they model in a realistic manner the parabolic variation

of the transverse shear stress through the laminate thickness. However, for the

type of problems considered in this research, the FSDT is used. When using the

FSDT, the shear correction factors should be used (Reissner, 1945; Whitney, 1973;

Reissner, 1972). Here a procedure similar to that of Cohen (1978) is used.

St. Venant's theory, as it concerns torsion, assumes that the cross-sections of

the beam maintain their original shape, although they are free to warp in the

axial direction. The warping displacement is postulated to be proportional to the

rate of twist, which is assumed to be constant along the beam axis (Shames and

Dym, 1985). However, these classical theories of bending and torsion may result in

erroneous predictions, especially when the warping constraint is present.
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Within the warping constraint beam model, the rate of twist can not be assumed

to remain constant along the axis of the beam. Thus for an arbitrary cross section

we must abandon the assumption that plane sections remain plane and introduce

a warping function to account for warping in the x-direction. Many researchers

have developed more realistic models (Librescu and Song, 1991; Fang and Springer,

1991; Berdichevsky et al., 1992). They have shown that for anisotropic cantilevered

beams, the warping inhibition induced by the restraint of torsion suggests that

the St. Venant's twist concept is not applicable. Crawley and Dugundji (1980)

studied the warping restraint effect on torsional vibration with bending-torsion

coupling. Later, Kaza and Kielb (1984) investigated the torsional vibration of

rotating pretwist beams by varying the aspect ratio and including the warping

effect. Librescu and Song (1991) incorporated the effects of primary and secondary

warping restraint in the study of composite thin-walled beam structures. Although

many researchers have suggested various methods of approximating the warping

distribution, here we propose to use a simpler method to calculate the warping

function for thin beams.

Although the analysis of a laminated composite structure as a three-dimensional

solid would be most accurate, it is numerically costly. Without loss of accuracy,

thin-walled laminated composites can be modeled as two-dimensional structures

(i.e., plates and shells) because they (i) are made with their planar dimensions one

or two orders of magnitude larger than their thickness, and (ii) are often used in

applications that require only axial and bending strength. Moreover, structures

having high length-to-width and length-to-thickness ratios can be approximated

using one-dimensional theories, as is the case of helicopter rotor blades and some

wings.
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1.2 Finite Element Nonlinear Analysis

The study of fiber-reinforced laminated composite structures using discretized meth-

ods such as the finite element analysis is of great interest to researchers. With few

exceptions, most researchers have basically considered the traditional approach of

the finite element analysis, one of using numerical integration. An advantage of

numerical integration is that it is easier to implement in an existent finite clement

code. On the other hand, its use is disadvantageous because it may lead to shear-

locking and in some cases to convergence problems (Bathe, 1996).

Only a few researchers have tried to integrate symbolic computation into the

finite element models (Yang, 1994; Teboub and Hajela, 1995). An advantage of

symbolic integration is that it saves computational time because the tangent stiff-

ness matrix and the internal force vector, per iteration, for each element are eval-

uated only once. To the best of our knowledge, no work that integrates symbolic

manipulators into the finite element nonlinear analysis for laminated composites is

available.

In this research, it is of interest to study structures that undergo large defor-

mations. Geometric nonlinearities must be included when large deformations are

important. Moreover, for theories including shear deformation and geometric non-

linearities, a two-dimensional theory would require a large number of degrees of

freedom. A one-dimensional model is desirable and thus used here.

In the last two decades, some attention has been paid to the development of lam-

inated beam elements. Earlier, a 12-dof element was developed and formulated for

deterministic symmetric laminated beams to study their static and dynamic behav-

iors (Chen and Yang, 1985). Later a 20-dof element (Kapania-Raciti Element) was

developed to study static, free vibration, buckling, and nonlinear vibrational anal-

ysis of unsymmetrically laminated beams (Kapania and Raciti, 1989a). Kapania
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and Raciti (1989b, 1989c) gave an extensive review of the literature on laminated

beams and plates that existed prior to 1989. However, no derived beam elements

available before or since 1989 have all of the following features in one element:

use of symbolic integration, all three displacements (axial, transverse, and lateral),

torsional and warping effects, inplane rotation, and shear effects.

Bassiouni et al. (1999) used a finite element model to obtain the natural frequen-

cies and mode shapes of laminated composite beams. The finite element consisted

of five nodes: the two end points, one at one-third, one at two-thirds, and the mid-

point. The displacement components are lateral displacement, axial displacement,

and rotational displacement. Closed form solutions for stiffness and mass matri-

ces are given. Although this is one of the most complete beam elements, it does

not take into account inplane shear, shear deformations, transverse deflections, and

torsional effects.

Finite elements based on the FSDT are challenging because they add additional

degrees of freedom to the problem. However, quite a few researchers have developed

such elements. Koo and Kwak (1994) proposed a finite element suitable for the

analysis of composite frames based on the first-order shear deformation theory.

The deflection is separately interpolated for bending and shearing with cubic and

linear functions, respectively. Carrera and Villani (1994) dealt with the nonlinear

analysis of multilayered axially compressed plates in static conservative cases.

A formulation for the exact dynamic stiffness matrix for symmetric and unsym-

metrically laminated beams has been derived using the exact shape functions for the

deflection and bending slope of composite laminated beam elements (Abramovich

et al., 1995; Eisenberger et al., 1995). The formulation is based on the FSDT and

includes rotatory inertia effects developed by Abramovich (1992).
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Some researchers have analyzed laminated beams using the state-space solu-

tion. Teboub and Hajela (1995) studied the free vibrations of anisotropic lami-

nated composite beams using FSDT, including inplane and rotatory inertias, using

a state-space solution instead of the finite element method. Later, Khdeir and

Reddy (1997) used the state-space concept in conjunction with the Jordan canon-

ical form to solve the governing equations for the bending of cross-ply laminated

beams. They used classical, second-order, and third order theories to develop exact

solutions for symmetric and unsymmetric cross-ply laminated beams. The solution

is mainly based on the theories previously employed to investigate the vibration and

buckling analysis of cross-ply laminated beam (Khdeir and Reddy, 1994; Khdeir,

1996).

Some research has been focused on deriving beam elements for laminated com-

posites using higher order shear deformation theories (HSDT). Manjunatha and

Kant (1993) developed a set of higher-order theories for the analysis of composite

and sandwich beams by using C O finite elements. By incorporating a more realistic

nonlinear displacement variation through the beam thickness, they eliminated the

need for shear correction coefficients. Kam and Chang (1992) studied the bending

and free vibration behavior of laminated composite beams using FSDT and HSDT.

Shi et al. (1998) investigated the influence of the interpolation order of the ele-

ment bending strain on the solution accuracy of composite beam elements derived

using HSDT and presented a simple and accurate third-order composite beam el-

ement. They concluded that the strain expression that gives the higher order of

bending strain interpolation should be chosen for the finite element modeling of

composite beams based on HSDT.

Kadivar and Mohebpour (1998) studied the finite element dynamic response of

an unsymmetrically laminated composite beam subject to moving loads. The one-

dimensional finite element is derived based on classical lamination theory, first-order

shear deformation theory, and higher-order shear deformation theory.



1.2. FINITE ELEMENT NONLINEAR ANALYSIS

Subramanian (2001) developed a two-noded C 1 finite element of eight degrees

of freedom per node, using a HSDT, for fiexural analysis of symmetric laminated

composite beams. Lam and Zou (2001) developed a higher-order shear deformable

finite strip for the analysis of composite laminates. The formulation allows C o

continuity with nine variables and can be used to analyze both symmetrically and

unsymmetrically laminated plates.

Yildirim and Kiran (2000) studied the out-of-plane free vibration problem of

symmetric cross-ply laminated beams by the transfer matrix method. The formu-

lation is based on the first-order shear deformation theory. In their formulation it is

possible to isolate the effects of rotatory inertia, transverse shear, and axial defor-

mations to study their influence on the natural frequencies. In a subsequent work,

Yildirim (2000) used the stiffness method for the solution of the purely inplane

free vibration problem of symmetric cross-ply laminated beams. In the former,

six degrees of freedom were defined for an element, four displacements and two

rotations.

Others have used layerwise theories in the development of laminated beam ele-

ments. Averill and Yip (1996) developed an accurate, simple, and robust two-noded

C o finite elements based on shear deformable and layerwise (zig-zag) laminated

beam theories. The two-noded element has only four degrees of freedom per node.

The formulation is only valid for small deformations.

Cho and Averill (1997) developed a beam finite element based on a new dis-

crete layer laminated beam theory with sublaminate first-order zig-zag kinematic

assumptions for both thin and thick laminated beams. The finite element is de-

veloped with the topology of a four-noded rectangle, allowing the thickness of the

beam to be discretized into several elements, or sublaminates.

Only few researchers have worked on nonlinear analysis of laminated beams

using the finite element method. Murin (1995) formulated a nonlinear stiffness



1.2. FINITE ELEMENT NONLINEAR ANALYSIS 9

matrix of a finite element without making any simplifications. The matrix includes

the quadratic and cubic dependencies of the unknown increments of the generalized

nodal displacements into the initially linearized system of equations. However, the

formulation is limited to isotropic materials and not applied to laminated compos-

ites.

Patel et al. (1999) studied the nonlinear flexural vibrations and post-buckling of

laminated orthotropic beams resting on a class of two parameter elastic foundations

using a three-noded shear flexible beam element.

After reviewing most of the work done in this field, a number of challenges

intrigued us. In some formulations, the transverse displacement was split as the

addition of shear and bending contributions. This leads to a singular mass matrix

when considering rotatory inertias. On the other hand, one can also consider the

total transverse deflection and introduce shear using the rotation of the normal to

the middle surface in the displacement field.

Another fact is that when considering in-plane shear rotation _ = OU/Oy, the

lateral displacement v cannot be ignored. Ignoring the lateral displacement brings

inconsistencies in the strain-displacement relations.

Moreover, when studying the uncertainties of symmetrically and unsymmetri-

cally laminated beams, one should have a beam element capable of varying material

and geometric properties. The present element enables us to vary all the properties

of the beam, a characteristic which has helped us to study the probabilistic nature

of laminated beams in the presence of uncertainties (Kapania and Goyal, 2001,

2002).

To the best of the author's knowledge, there is no shear deformable laminated

beam element for the study of large deflection, including torsional and warping

effects, lateral displacement, and inplane displacement as a degree of freedom.
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Thus, there seems to be a need for a much improved laminated beam element

for the static and dynamic analysis of large deflections of symmetric and unsym-

metrically laminated composite beams. An element that does not require the use of

numerical integration but uses symbolic manipulators such as Mathematica would

be most helpful in a study of composite beams with uncertainties.

1.3 Dynamic Stability of Laminated Beams

Usually structures may become unstable under an increasing compressive load. For

such problems, stability analysis becomes a significant tool when it comes to design

and analysis of structures such as aircraft, ships, and automobiles.

The stability of the equilibrium state can be studied using three criteria: (i)

static or adjacent equilibrium criterion, (ii) energy criterion, (iii) dynamic (or ki-

netic or vibration) criterion. For a conservative system, the only possible initial

instability is of divergence type. For a nonconservative system, however, instability

can be of divergence, flutter, or both, depending on the amount of nonconserva-

tiveness. Since only the kinetic method works for both conservative and nonconser-

vative systems, it will be the method used in this research. The dynamic criterion

relates the critical loads and the natural frequencies of the system.

Stability analysis using the dynamic criterion has been used by various re-

searchers. Argyris and Symeondis (1981) presented a nonlinear finite element anal-

ysis of elastic structures subject to nonconservative forces. They derived a general

theory to study the stability behavior of non-self-adjoint boundary-value problems.

Hasegawa et al. (1988) studied the elastic instability and the nonlinear finite dis-

placement behavior of spatial thin-walled members under displacement-dependent

loads. They presented a general formulation to derive the loading stiffness matrix.
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The dynamic stability of structures under a follower force using the finite ele-

ment method has also been studied by Chen and Yang (1989), Chert and Ku (1991a,

1991b), Saje and Jelenic (1994), Vitaliani et al. (1997), Kim and Kim (2000), and

Detinko (2001).

Moreover, there has been some interest to study structures subject to both

conservative and nonconservative loads. When the nonconservativeness is added as

a fraction of the purely tangential follower loads, it is called a subtangential load.

Rao and Rao (1987a, I987b) studied the stability of a cantilevered beam under

a subtangential follower load using the static and dynamic criteria. Gasparini

et al. (1995) discussed the transition between the stability and instability of a

cantilever beam subjected to a partially follower load by using the FEM.

Later, Zuo and Schreyer (1996) studied the instability of a cantilevered beam

and a simply supported plate, subjected to a combination of fixed and follower

forces. They introduced a nonconservative parameter to account for all possible

combinations of these forces. They showed that for the beam, instability changes

from divergence to flutter at a critical value of this parameter; for values of the

parameter above the critical value, the flutter instability remains as the only insta-

bility pattern; and for the plate, the instability is governed by flutter for a certain

range of the nonconservative parameter, even though divergence instability still

exists.

Ryu et al. (1998) investigated the dynamic stability of cantilevered Timoshenko

vertical columns having a tip rigid body and subjected to the action of subtangential

forces. They refer to subtangential force as a combination of tangential follower

force with the vertical force.

Only few researchers have studied the stability of laminated structures under

a tangential follower loads, such as Xiong and Wang (1987). They presented an
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analytical method for calculating the stability of a laminated column under a Beck-

type load including shear deformation and rotatory inertia.

In fact, aerospace structures may not only be subject to conservative loads but

also to nonconservative loads as well. To the best of the author's knowledge, no

work has been found on the stability of laminated beams subject to subtangential

loading using the dynamic criterion. Thus, we will study how the stability of

laminated composite beams is affected by subtangential loads.

1.4 A Computational Probabilistic Analysis

Because of the inherent complexity of composite materials, fiber-reinforced lam-

inated structures can be difficult to manufacture according to their exact design

specifications, resulting in unwanted uncertainties. In fact, during the manufactur-

ing of laminates, material defects such as interlaminar voids, delamination, incorrect

orientation, damaged fibers, and variation in thickness may be introduced (Reddy,

1997).

The design and analysis using conventional materials is easier than those using

composites because for conventional materials both material and geometric prop-

erties have either little or well known variation from their nominal value. On the

other hand, the same cannot be said for the design of structures using laminated

composite materials. Thus, the understanding of uncertainties in laminated struc-

tures is highly important for an accurate design and analysis of aerospace and other

structures. Elishakoff (1998) has suggested three different approaches to study un-

certainties: (i) probabilistic methods, (ii) fuzzy set or possibility-based methods,

and (iii) anti-optimization.

The non-probabilistic methods such as fuzzy set theory and anti-optimization
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are used when data regarding the uncertain parameter are not available or little

is known about the probability density function (Ayyub, 1994; Elishakoff, 1995).

However, these uncertainties are ignored in this research because non-probabilistic

methods are beyond the scope of the present work.

In this research, the noncognitive sources of uncertainty are of great interest

and are treated using probabilistic methods or non-probabilistic methods. The

noncognitive sources of uncertainty (i.e., material and geometric variations) are in

general quantified and information about the uncertainty of these parameters may

be available. When sufficient data are available to predict the probability density

function, then a probabilistic method can be used. Thus, throughout this disser-

tation uncertainties due to noncognitive sources are studied using a probabilistic

approach.

The randomness of noncognitive sources leads to variations in the stiffness and

mass coefficients of the laminates. These uncertainties may involve geometric quan-

tities (e.g., ply-orientations and dimensions), material properties (e.g., elastic mod-

ulus, shear modulus, Poisson's ratio, and material density), and external properties

(e.g., thermal and loading effects). However, in this research only those uncertain-

ties involving material and geometric properties are considered.

The probabilistic analysis can be performed using either an analytical or a com-

putational approach. An analytical approach would be most accurate although

cumbersome and impractical except for very simple systems. However, with the

availability of high-speed computers, the finite element method has become a stan-

dard tool for engineers to analyze structures with complex geometry, including

various sources of nonlinearities. However, the deterministic finite element method

fails to take into account uncertainty in different parameters of the structure, and

thus cannot be used for reliability analysis.
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Various methods exist to analyze an uncertain structure by integrating prob-

abilistic aspects into the finite element modeling. Especially, there has been a

growing interest in applying these methods to better understand laminated com-

posite structures by integrating the stochastic nature of the structure in the finite

element analysis (Schu_ller, 1997). When the probabilistic nature of material prop-

erties, geometry, and/or loads is integrated in the finite element method, such a

concept is called probabilistic finite element method (PFEM).

The probabilistic finite element analysis (PFEA) can be classified into two cat-

egories: perturbation techniques and simulation methods. Perturbation techniques

are based on series expansion (e.g., Taylor Series) to formulate a linear or quadratic

relationship between the randomness of the material, geometry, or load and the ran-

domness of the response (Nakagiri and Hisada, 1988a; 1988b). Simulation methods

such as Monte Carlo simulation rely on computers to generate random numbers

from the material, geometry, or load uncertainties and correlate the probabilistic

response to it (Shinozuka, 1972; Fang and Springer, 1993; Vinckenroy et al., 1995).

A considerable amount of research has been made in the field of random struc-

tures using the stochastic finite element method. Conteras (1980) and Vanmarcke

et al. (1986) applied the method to the analysis of static and dynamic problems.

Collins and Thompson (1969) applied it to the analysis of eigenvalue problems.

Kiureghian and Ke (1988) and Zhang et al. (1996) applied perturbation methods

to structural design. The major application has been for design purposes and all

the work has been applied to isotropic materials.

Chakraborty and Dey (1995) developed a stochastic FEM for the analysis of

structures having statistical uncertainties in both material properties and exter-

nally applied loads. These uncertainties were modeled as homogeneous Gaussian

stochastic processes. They used the Neumann expansion technique to invert the

stochastic stiffness matrix. They did not consider a stochastic mass matrix, and

the formulation was applied only to linear stiffness matrices. Also, no application
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was made to composite materials.

The probabilistic analysis requires the derivatives of the structural matrices as

well as the derivatives of the eigenvalues, eigenvectors, and displacements. Lee and

Lim (1997) presented an approach for extending sensitivity methods to include the

structural uncertainty with random parameters using perturbation techniques.

Derivatives of eigenvectors with respect to design variables are very useful in

certain analyses and design applications. Many researchers have developed various

sensitivity-based methods to calculate these derivatives (Fox and Kapoor, 1968;

Plaut and Huseyin, 1973; Haftka and Adelman, 1986; Liu et al., 1995). The sen-

sitivity analysis and calculation of laminated composites as a tool for design opti-

mization has been studied by various researchers such as Pederson (1987), Mateus

et al. (1991), and Chen et al. (1996).

Brenner and Bucher (1995) presented a stochastic finite element-based reliabil-

ity analysis of large nonlinear structures under dynamic loading, involving both

structural and loading randomness, with relatively little computational effort when

compared to the traditional Monte Carlo methods. Papadopoulos and Papadrakakis

(1998) used a weighted integral method in conjunction with Monte Carlo simulation

for the stochastic finite element-based reliability analysis of space frames.

Chakraborty and Dey (1996) implemented the stochastic finite element simula-

tion of random structures on uncertain foundations under random loading. Later,

Chakraborty and Dey (1998) proposed a stochastic FEM for the frequency domain

for the analysis of structural dynamic problems involving uncertain parameters.

Recently, Oh and Librescu (1997) studied the free vibration and reliability of

cantilever composite beams featuring structural uncertainties. They used a stochas-

tic Rayleigh-Ritz formulation. Graham and Deodatis (2000) studied the variability

of the response displacements and eigenvalues of structures with multiple uncertain
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material and geometric properties.

Imai and Frangopol (2000) reviewed the theory of finite element reliability anal-

ysis of geometrically nonlinear elastic structures based on the total Lagrangian for-

mulation. They also provided developments in computer implementation and es-

tablished the basis of understanding of the applications presented in a subsequent

work (Frangopol and Imai, 2000).

Mei et al. (1998) used a wavelet-based stochastic analysis to analyze isotropic

beam structures. Sobczyk et al. (1996) analyzed the dynamics of structural systems

with randomly varying parameters using the random integral equation theory.

The presence of noncognitive uncertainties will lead to randomness in the ma-

terial and geometric parameters. Because of the uncertain nature of material and

geometric parameters, the stability and vibration analysis of the trivial equilibrium

state (assuming it exists) will be affected as well.

The analysis of structures under random loading has been studied for a large

class of problems (Maymon, 1998). Moreover, noncognitive uncertainties in com-

posite material properties have been studied by Nakagiri and Hisada (1983), Nak-

agiri et al. (1987), Ibrahim (1987), Leissa and Martin (1990), and Oh and Librescu

(1997).

In the dynamic analysis of the present problem, the random nature of the stiff-

ness matrix, mass matrix, eigenvalues, and eigenvectors can be studied using a Tay-

lor series expansion up to second order about the mean of each random variable.

This approach was recently used by Zhang and Ellingwood (1995) to solve buck-

ling problems. Oh and Librescu (1997) used a similar formulation for a stochastic

Rayleigh-Ritz approach to study the free vibrations of laminated composites.

However, to the best of the author's knowledge, no work has been found in

integrating the probabilistic finite element method into the vibrations and stability
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analysis using perturbation methods. Thus, this work will intend to integrate both

the existent methods of analyzing the stability of the equilibrium state using the dy-

namic criterion and three different methods for probabilistic analysis: probabilistic

finite element method, sensitivity-based Monte Carlo simulation, and Monte Carlo

simulation.

1.5 Present Work

The goals of this research can be summarized as follows:

° Develop a shear deformable laminated beam element using the first-order

shear deformation beam theory featuring geometric and material uncertain-

ties.

2. Perform the deterministic stability analysis of laminated beams subjected to

subtangential loading using the dynamic criterion.

. For a structure with imperfections in the ply angles and ply axial modulus of

elasticity, perform stability analysis of uncertain systems using the dynamic

criterion of conservative and nonconservative systems.

As a first step in this journey to study the uncertainties of laminated structures,

it is assumed that the random variables are dependent on only one dimension, i.e.,

the x-axis. This assumption requires the use of a one-dimensional finite element

model. The elements previously developed in the literature have raised our curiosity

because of the following reasons:

• In some cases, if the transverse displacement is split as the addition of shear

and bending contributions, it leads to a singular mass matrix when inertia

terms are kept.
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• The probabilistic nature of laminated beams cannot be easily studied.

• Most derivations use numerical integration as opposed to symbolic manipu-

lators.

• When considering inplane shear rotation _ = OU/c_y and twist angle T =

OW/Oy, the lateral displacement V cannot be ignored.

Thus a shear deformable laminated beam element, with twenty-one degrees-of-

freedom, is developed using first-order shear deformation beam theory to account for

uncertainties. In Chapter 2, we present the Total Lagrangian formulation for gener-

ally anisotropic laminated composite structures and state the generalized principle

of virtual work (GPVW). We also nondimensionalize the GPVW for our problem.

Chapter 3 is devoted to the formulation of the shear deformable beam element

which is obtained by discretizing the generalized principle of virtual work. Since it

is desired to study the stability of the equilibrium state using the dynamic criterion,

the equations of motion are perturbed about a trivial equilibrium state, we present

the finite element formulation for the stability analysis of partially conservative

systems. In Chapter 4 we present the deterministic analysis of laminated structures

subjected to subtangential loading.

The second part of this research is dedicated to develop and study the stability

of symmetrically and unsymmetrically laminated beams featuring mechanical and

geometric uncertainties. Thus the probabilistic method using the finite element

method is developed in Chapter 5. Results and discussions for the probabilistic

analysis are presented in Chapter 6.

The final chapter is a brief summary of this dissertation and includes our final

remarks. The last section of this chapter includes areas in which this work can be

expanded.



Chapter 2

Equations of Motion for Generally

Anisotropic Laminated

Composites

The equations of motion can be derived using energy methods and the principle

of virtual work. The advantage of the principle of virtual work over the principle

of minimal total potential energy is that the formulation is applicable to both

conservative and nonconservative problems.

In the present work, we are interested in studying the stability of structures

subject to conservative and nonconservative loads. Methods based on the principle

of minimum potential energy are not helpful because they are not applicable to

structures subjected to nonconservative loads, such as the follower loads. Moreover,

the stability analysis of this kind of problem can only be studied using the dynamic

criterion. Thus, here the generalized principle of virtual work--which includes

inertial loads--is preferred.

In this chapter, the equations of motion are presented using the generalized

principle of virtual work for the static and dynamic analysis of both symmetri-

cally and unsymmetrically laminated beams with uncertain parameters subject to

conservative and nonconservative loading.

19
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2.1 Basic Assumptions

Although using general theories and equations would be most accurate, they would

be impractical for a wide range of problems. In this work, several assumptions

simplify these theories, helping us grasp a better understanding of the problem.

As a first simplification, thermal and piezoelectric effects are ignored. Every

structure undergoes temperature changes. However, we will restrict ourselves to

cases for which the temperature gradient is very small or negligible. The structures

considered here do not have any piezoelectric devices.

We will consider a general out-of-plane warping. Although many researchers

have ignored warping, as the present results show, it cannot be ignored for certain

types of laminated beams.

Although a two-dimensional theory would be most accurate, the discretization

would require a large number of degrees of freedom. Structures having one dimen-

sion far larger than the other two can be approximated using one-dimensional the-

ories. In the present work, the plate is assumed to have a high length-to-width and

length-to-thickness ratios. Thus the plate can be modeled using a one-dimensional

theory, such as beam theory. Here we use the term laminated beam to refer to plate

strips.

For most aerospace applications, the thickness of the plate can be assumed far

smaller than the length and the width. As a result, the magnitudes of the stresses

acting on the surface parallel to the mid-plane are small compared to the bending

and membrane stresses. As a result, the state of stress can be approximated as a

state of plane stress.

Laminated composite materials are made of fiber-reinforced lamina of different

properties. It is assumed that each lamina is a continuum (i.e., no empty spaces,
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Figure 2.1: Reference coordinate system

voids, internal delaminations, or material defects exist) and it behaves as a linear

hyperelastic material.

Fiber-reinforced lamina are often characterized by materials having three mu-

tually orthogonal planes of material symmetry referred to the principal material

directions (i.e., orthotropic materials). Therefore, each lamina is assumed to be

characterized by orthotropic materials.

In laminated plates with large bending-stretching coupling, the effect of curva-

ture may arise during the curing process of an unsymmetrically laminated plate.

However, this effect is ignored and the present formulation assumes a perfectly

straight laminated plate in its initial configuration. In the case of post-buckling

analyses, imperfections can be included by assuming the loading to be eccentric.

A cartesian coordinate system x-y-z, shown in Fig. 2.1, is used and it is placed

at the mid-surface of the laminate: the axial displacement u is associated with

the x-axis which lies along the length of the beam, the lateral displacement v is

associated with the y-axis which is placed at the middle of the beam, and the

transverse displacement w (upwards) associated with the z-axis which is placed at

the midsurface.
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Further, it is assumed that the x-z plane divides the beam in two identical parts:

in other words, material, geometry (with the exception of ply angles), and loading

are symmetric about the x-z plane.

2.2 Nonlinear Behavior

Many structural problems undergo nonlinear behavior, even though sometimes such

behavior may be difficult to identify. In general, there are four ways in which

structural nonlinear behavior can occur (Doyle, 2001). These are:

.

.

.

Material nonlinearity. The material stress-strain relationship is actively

nonlinear. In this case, material behavior depends on the current deformation

state and possibly past history of the deformation. Material nonlinearity can

be observed in structures undergoing nonlinear elasticity, plasticity, nonlin-

earity viscoelasticity, creep or other inelastic effects.

Geometric nonlinearity. There is a nonlinear strain-displacement relation-

ship. The change in geometry, as the structure deforms, is taken into account

when forming the strain-displacement relationship and hence the equilibrium

equations. Geometric nonlinearity may be due to large strains or small strains

but with large displacements and/or rotations (cables, leaf-springs, arches,

fishing rods, snap-through buckling).

Application of nonlinear forces. The magnitude or direction of the

applied forces changes with application to the structure (nonlinear force-

deflection relationstdp). This could be due to pressure loadings, gyroscopic

forces, or follower forces.
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4. Displacement boundary condition nonlinearity. The displacement

boundary conditions depend on the deformation of the structure (nonlinear

displacement-de[ormation relationship). The most important application is

in contact problems, where the displacement is highly dependent on the rela-

tionship between two contact surfaces (normal force and friction present).

Throughout this dissertation, nonlinearities in both material and boundary are

neglected and only geometric and force nonlinearities are considered. We use ge-

ometric nonlinearities to analyze laminated structures with large displacements,

small strains, and moderate rotations. The types of force nonlinearities considered

here are those due to tangential follower loads.

2.3 Kinematic Description

When geometric nonlinearities are included, three kinematic descriptions are avail-

able:

1. Total Lagrangian Description (TL): the reference configuration is sel-

dom or never changed and it is often kept equal to the base configuration

throughout the analysis.

2. Updated Lagrangian Description (UL): strains and stresses are redefined

as soon as the reference configuration is updated.

3. Corotational Description (CR): strains and stresses are measured from

the corotated configuration, whereas the base configuration is maintained as

reference for measuring rigid body motions.

In problems related to uncertainties, usually the noncognitive uncertainties are

known in the structure's reference configuration. In the deformed configuration
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the knowledge of these uncertainties is most likely unknown. A kinematic descrip-

tion that seldom changes its reference configuration is desirable. Thus, the Total

Lagrangian description, a widely used formulation in continuum-based analysis, is

used (Bathe, 1996).

2.4 Continuum Mechanics

Continuum mechanics is essential for nonlinear analysis. This section starts with

the displacement field used in this dissertation. Next, we provide a brief description

of deformation, present the Green-Lagrange strain measures, and finally express the

Second Piola-Kirchhoff stresses (PK2) in terms of the physical (Cauchy) stresses.

2.4.1 Displacement Field

The analysis of fiber-reinforced laminated composites is far more complex when

compared to conventional materials because composites are inhomogeneous through

the thickness and generally anisotropic. Anisotropic materials exhibit directional

characteristics and thus bring shear-extension coupling into the analysis. When

laminates are unsymmetrically stacked, bending-stretching coupling is added to

the analysis. Moreover, differences in elastic properties between fiber filaments

and matrix materials lead to inplane-shear coupling. The high ratio of inplane

modulus to transverse shear modulus makes the classical lamination theory, which

neglects the effect of out-of-plane strains, inadequate for the analysis of multilayered

composites. In such a case, one should use a theory which includes transverse shear

deformation, an example being the first order shear deformation theory (FSDT).

Thus, we need a displacement field that would be able to capture the existence

of the various coupling effects, which play a major roll in laminated composites.
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The following displacement field for the first-order shear deformation beam theory,

in the defined coordinate system of reference, can be used to take these couplings

into account:

U(x,y,z,t) = u(x,t) + y/_(x,t) + z¢(x,t)- zg(x,y,t) (2.1a)

V(x,y,z,t) = v(x,t)-- ZT(Z,t) (2.15)

W(x,y,z,t) = W(x,t) + yT(x,t) (2.1C)

where u(x, t) is the axial displacement, v(x, t) is the lateral displacement, w(x, t) is

the transverse displacement, ¢(x, t) is the rotation of the transverse normals with

respect to x,/3(x, t) is the in-plane rotation, T(x, t) is the twist angle, and g(x, y, t)

is the warping function to account for twist, bending, and extensional effects. All

these displacements and rotations are measured at the midsurface.

The generalized displacement vector is defined as follows:

{ u(_,t) v(_,t)w(_,t)_-(_,t) _(_,t) _(x,t)}dT= (2.2)

Further, we assume that it is possible to separate the displacement components

of the laminated beam as products of time and spatial functions, assuming the same

time function for each displacement, i.e.,

u(x,y,z,t)
f(t)

v(x, y, z, t)
f(t)

w(z, y, z, t)
f(t)

= u(z,y,z)=_(_)+yZ(x)+z¢(z)-zg(_,y) (2.3a)

= y(x,y,z) =v(x)- zT(x) (2.35)

- w(_,y,z)=_(z)+y_-(x) (2.3c)
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z,

Current _ n. zl)

W configuration __'

Reference

Figure 2.2: Large deformation of a body from the initial configuration, C °, to the current

configuration, C 1

2.4.2 Displacement Gradients

Figure 2.2 shows a general body in its initial configuration and in its current con-

figuration (after deformation). Let the body in its undeformed configuration have

a volume designated F0, external surface area f_0, mass density p0, and reference

material points of the body to cartesian coordinates xo, yo, zo. Denote the deformed

configuration with a volume F1, external surface area f_l, mass density Pl, and ref-

erence material points of the body to cartesian coordinates xl, yl, zl. Also, let the

coordinate systems of the reference and current configuration coincide.

The initial position of a point, P0, with coordinates (x0, y0, Zo), is given by the

position vector ro, and the current position of the same point, P1, with coordinates
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(Xl, Yl, zl), is given by the position vector rl. The position vector rl is defined as

rl =ro+R (2.4)

where

R= V(x,y,z,t) ro= yo ' rl= yl

W(x, y, z, t) Zo J zl

(2.5)

The derivatives of rl with respect to ro constitute the deformation gradient

matrix, F, when arranged in Jacobian format:

r __

Oxl Oxt Oxl

Oxo cOyo OZo

Oyl Oyl Oyl

OXo Oyo OZo

Ozl Ozl Ozl

OXo Oyo OZo

OU
l+--

Oxo

OV

aXo

OW

Oxo

OU OU

Oyo COZo

OV OV

1 + Oy---o Oz--'-o

OW OW

Oyo 1 +

(2.6)

The determinant of the deformation gradient matrix is known as the Jacobian

determinant and is defined as

J = det[F] (2.7)

The displacement gradients with respect to the reference configuration are defined

as follows:

G=F-I=

(_X 1 OX 1

ox-7-1 o --g
Oyt Oyl

Oxo Oyo

OZ1 OZl

Oxo Oyo

_Xl

OZo

-- 1 OY---Z1
Ozo

OZl

OZo

OU OU OU

Oxo Oyo Ozo

OV OV OV

Oxo Oyo Ozo

OW OW OW

OXo Oyo Ozo

(2.8)
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For the Total Lagrangian description, it is convenient to arrange the displacement

gradients in vector form as follows:

gT-={91 92 g3 94 95 gs 97 9s 99} (2.9)

Since the strains and displacements are referred in the reference configuration,

we will take r = ro. Now, the displacement gradients for the assumed displacement

field in Eq. (2.3) are:

OU(x, y, z, t) Ou &3 0¢ Og(x, y) (2.10a)
9, = ox = o---i+ y _ + z _ - z o-----V-

OV(x,y,z,t) Ov Or (2.10b)
g2 = Ox - Oz z-o_x

ow(x, y, z, t) Ow OT (2.10c)
g3 = oz = 0-_ + Y_zz

COU(x, y, z, t) _ _ _ z cOg(x, y) (2.10d)g4 _ - --
Oy Oy

OV(x, y, z, t)
gs = = 0 (2.10e)

Oy
OW(x, y, z, t)

gs = = _- (2.10f)
Oy

cOu(z, y, z, t)
gr = Oz = ¢- g(x,y) (2.10g)

OV(x, y, z, t)
gs = Oz = -7 (2.10h)

OW(z, y, z, t)
99 = Oz = 0 (2.10i)

2.4.3 Strain Measures

The strains associated with the displacement field defined in Eq. (2.3) are computed

using the Green-Lagrange strains. These strains can be expressed in terms of the
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displacement gradients, in the quadratic form, as follows:

1 gT
ei=hTg+_ n_g (2.11)

where the 9 × 1 vectors h_'s and 9 × 9 matrices Hi's are given in Appendix A.

Here we use the Von Kfi.rm_n nonlinear strains, which assume small strains and

moderate rotations, and these can be expressed in terms of the Green-Langrange

strains as follows:

1 2

el = exx=gl+_g3

1 2

e2 = e_=gs+_g6

e3 = ez: = g9

e4 = 2eyz =g6+g8

e5 = 2e_z=g3+gv

e6 = 2ex_ =g2+g4+g3g6

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.12f)

Note that e3 = e4 = 0 for our displacement field. The strains in Eq. (2.12) can be

expressed in terms of the midplane strains and curvatures as follows:

° ° (2.13a)exx = _xx ÷ Z lCxx

° + z ° (2.135)eyy _- eyy I£yy

o (2.13c)2e_ = 7_ + z n_

o o (2.13d)2e_ = 'Tx_ + z nzu

0o o o o ) thewhere (e°_, eyy, 7gz, 7°N) are the membrane strains and (_;o, _¢y_, _;_, _

bending strains (curvatures). Now, we express the midplane strain and curvature



2.4. CONTINUUM MECHANICS 30

terms in vectorial form, and further separate them into linear and nonlinear strains:

= _L -_- ENL (2.14)

where gI, is the vector with midplane linear strains,

gL L L L L L L 1T"_- {_xx,_yy_/xy_ Lt_xz, t'_yy, K.xy _ _xz ._

and ENL is the vector with midplane nonlinear strains,

NL NL NL NL NL NL_NL_S_NL { _xx , t%y ,_yy _fz::y , _xx _ _yy ,

The nonzero midplane linear strains are

I_ Ou 08
exx - Ox + Y-_z

0¢ Og(x,y)L _
gxx

Ox cOx
cOw Or

-y;_ - + ¢ + y - 9(z,y)ox -_z
L COY

CO7 Og(x, y)L __
I'_xy

cOx Oy

The nonzero midplane nonlinear strains are

,'f_y = + y "1-

(2.15a)

(2.15b)

(2.15c)

(2.15d)

(2.15e)

(2.16a)
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2.4.4 Warping Function

Although many researchers have suggested various methods of approximating the

warping distribution, here we use the simplest possible warping function. The func-

tion is picked such that it satisfies the classical laminated plate theory (CLPT),

which assumes that the transverse normals rotate such that they remain perpen-

dicular to the midsurface after deformation. In the CLPT 7Lz = 0, and this is

satisfied by
0r

¢ + Ow/Ox = 0 and Y _x - g(x, y) = 0

Further adding a warpmg constant c_, the warping function used here becomes:

C_T

g(x,y) = aYO--xx (2.17)

where c_ takes values of 0 or 1: when a = 0, warping is not included; when a = 1,

warping is considered.

Thus using this warping function, the transverse shear strain 7;L and curvatures

t_xxLand _=_L,for the FSDT, are expressed as follows:

_ = Ow 0_-
0---_ + ¢+y (1-a) _xx

L 0¢ 02r

L = --(1+(_) 0T
t_ xY
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2.4.5 Stress Measures

The stresses corresponding to the Green-Lagrange strains are the second Piola-

Kirchhoff stresses (PK2). The three dimensional tensor in cartesian coordinates is

S

S_ S.u S_

S_ Syy S_ (2.18)

It can be shown that the PK2 stresses are linearly related to the Cauchy stresses

as follows (Truesdell and Noll, 1965):

S = S O + J F -1 cr F -T (2.19)

where So are the prestresses, J the Jacobian determinant, F the deformation gra-

dient matrix, S the PK2 stresses, and er the Cauchy (true) stresses defined as

O'xx Gxy fizz

O'xy O'yy O'y z

Gxz (Tyz Gzz

(2.20)

Not only must the transformations that are the motions for each of the mass-

elements in an ensemble obey mass conservation, but the total mass of the entire

body must be conserved (McDonald, 1996). Thus,

Pl dF1 = po dF0 :=_ Pl tier[F] dF0 = P0 dFo

::v J = det[F] = dF1 _ po
dF0 Pl
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where dF1 and dFo are the volumes in the current configuration and reference

configuration, respectively; Pl and P0 are the mass densities in the current and

reference configuration, respectively.

Assuming that isochoric deformation takes place (volume-preserving deforma-

tion), J -- 1. Also, we assume that the stresses in the reference configuration,

S o , are zero. Lastly, recall that we restrict our analysis to large deformations but

small strains. Under these assumptions, it can be shown that the PK2 and Cauchy

stresses approach each other (Truesdell and Noll, 1965). Thus Eq. (2.19) reduces

to

S ,_ er (2.21)

2.5 Laminate Constitutive Relations

The relation between stress and strain is given by a constitutive equation. In

this section we present the constitutive equations for linear hyperelastic laminated

composite plates.

2.5.1 Linear Hyperelastic Material Law

Although the strain ezz was found to be zero, the present analysis will assume a state

of plane stress (Sz,=O) and condense e_z from the stress-strain relationship. The

reduced material coefficients are expressed as Qij. Since in laminated composites

each ply may have different orientation, the stresses are expressed in terms of an

arbitrary angle 0 and the transformed plane stress-reduced elastic coefficients are
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expressed in the 3 x 3 matrix Q (see Appendix B.1 for details):

Q

B _ m

Qll Q12 Q16

QI_ Q2_ Q_

(2.22)

The PK2 stresses are expressed in the 3 × 1 vector S and the inplane strains are

expressed in the 3 × 1 vector e:

S = Suy ,
exx I

e = eyy

2ezy

(2.23)

Further assuming that the material has monoclinic symmetry with respect to the

reference plane of the beam, the transverse shear strains are uncoupled from the

inplane strains in Hooke's Law. Thus the transformed stress-strain relationship

takes the following form:

S --- Qe (2.24)

The transverse shear stresses and shear strains are related by Hooke's Law as fol-

lows:

o,,]{2%.}Sx_ Q_ Q55 2e_
(2.25)

These stresses when evaluated at the k th lamina are expressed with a superscript

k.
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2.5.2 A, B, D Matrices

The integration of the stresses throughout the thickness leads to generalized stresses

(force and moment resultants):

= i h/2N_x Sx_ dz
J -hi2

h/2Nuy = Suu dz
J -h/2

h/2N_ = Sxy dz
J -h/2

h/2M_ = S_ z dz
J-h�2

h/2Myu = S_y z dz
J-h�2

h/2M_ = S_u z dz
J-h�2

h/2 S_z dz
Q_ =J-h/_

h/2 Syz dz
Q_ = J-h�2

where h is the thickness of the beam. Although the strains are continuous through

the thickness, stresses are not, due to change in material coefficients through the

thickness. Hence, the integration of the above stresses through the laminate thick-

ness requires a laminawise integration (Reddy, 1997).

The integration leads to the well-known matrices: the extensional matrix A,

the extensional-bending coupling matrix B, and the bending stiffness matrix D.

These are defined as

h/2 NlamAii = -'Qijdz = E-Q_3 (zk+l - zk ) i,j = 1,2,4,5,6 (2.26)
a -h/2 k=l

f -Bij = Qij z dz = Qij i, j = 1,2, 6 (2.27)
J -h/2 k=l

D,,= i -_,,z2ez=E-Q)_ z_+__= i,s = 1,2,6 (2.2a)
J -h/2 k=l

where Nlam is the total number of plies considered. When considering symmetrically

laminated composites, B is identically zero and the coupling between bending and
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stretching vanish. However, for unsymmetrically laminated beams, the coupling

cannot be ignored and it must be included in the analysis.

2.5.3 Constitutive Equations for Transverse Shear Resul-

tants

The integration of the transverse shear stresses, Eq. (2.25), through the thickness

of a laminated plate yields the following relation:

kl k2 A4_ k_ A55 1,7°_ J
(2.29)

where k_ and k_ are the plate shear correction factors (Whitney, 1972). For the

case of laminated beams Qy = 0, thus we condense out the shear strain "_z from

Eq. (2.29). The constitutive relation for the transverse shear resultant simplifies to

° (2.30)Q_=k_ d_5 _] %_

Let us define the equivalent bending stiffness due to shear as

Dc_5 = A_ A_5 (2.31)
A_

and redefine the shear correction factor as K8 = k_. Thus the constitutive relation

for the transverse shear resultant of the laminated beams considered here becomes

Q_ =/(8 Dc_57_z (2.32)

Here the values of K, are assumed as 5/6, a value often used in the literature.

However, a more rigorous treatment is given by Cohen (1978). This is discussed in

more detail in a later section.
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By integrating Eqs. (2.24) through the thickness, the basic constitutive relation

can be expressed in terms of the A, B, D matrices. Further, by adding an addi-

tional stiffness coefficient corresponding to the transverse shear modulus, by using

Eq. (2.32), we get the following constitutive relations:

{ MXX .

All

A12

A16

= Bll

B12

B16

0

A12 A16 Bll B12 B16 0

A22 A26 B12 B22 B26 0

A26 A_ B16 B26 Br_ 0

B12 Bls Dll D12 D16 0

B22 B2_ D12 D_2 D26 0

B26 B6a D16 D26 Ds6 0

0 0 0 0 0 Ks Dc_5

o

_xx

o

_yy

7_y

°I_ xx

o

I'_y y

o

tExy

k_fOz ,

(2.33)

In the analysis of one-dimensional structures,

My_ = Nyy = 0 (2.34)

o o

Thus, the midplane strain c_ and the bending curvature nyy are condensed from the

constitutive equations. This is done by rearranging and partitioning the bending-

stiffness matrix:

_ rr//D,,,DI,,,- [o] (2.35)
Dc = /[D,,,, DII,I]

[ [o] [Dc, 

where the first submatrix in the bending-stiffness matrix is reduced as follows:

-1
DR = DI,I- DI,IIDII,IIDII,I (2.36)
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This leads to the following equivalent bending-stiffness matrix for an unsymmetri-

cally laminated beam:

D c _---

Dcn Dc12 Dcl_ Dcl4 0

Dc12 Dc22 D_23 Dc_4 0

Dclz Dc23 Dc33 Dc34 0

Dc14 Dc_4 D_34 D_4 0

0 0 0 0 K_ D_s5

(2.37)

The details of the derivation and the coefficients of De are given in Appendix B.2.

Thus the laminate constitutive equations in Eq. (2.33) reduce to

r

Mxx _ _--

, Q*

D_,I Dcl_ D_13 D_14

D_12 D_22 D_,3 D_24

D_I_ Dcu_ D¢3a D_a,

D_I, D_2, D_34 Dc.

0 0 0 0

0

0

o

0

1<8D_

o

_xx

o

I_ x y

0[;,7 ,t

(2.3s)

2.6 Nondimensionalization

In many problems, we are interested in comparing the dimensionless response rather

than the actual values. The nondimensionalization is of great help when we are

comparing results with different properties. Two ways exist to nondimensionalize:

(i) solve the problem dimensionally and nondimensionalize the response, or (ii)

nondimensionalize the equation, resulting in a dimensionless response. In many

problems, the latter approach is a more elegant one because it helps us perform

parametric studies. Since in the literature very little attention has been given

regarding the nondimensionalization of the laminated equations of motion, here we

present a systematic way of doing so.
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For the shake of convenience, let us define the following nofi-dimensionalized

parameters:
g h g

rl = - r2= - rlr2 = - (2.39)
h b b

Moreover, the coordinates x, y, and z are nondimensionalized as follows:

x y z (2.40)

2.6.1 Dimensionless Displacement Field

The displacement field in Eq. (2.3) is expressed in terms of the midplane displace-

ments and rotation. Thus we begin with the nondimensionalization of these dis-

placements and rotations. Note that the twist rotation, T, the rotation of the

transverse normals with respect to x, ¢, and the in-plane rotation, /3, are all di-

mensionless quantities because their values are given in radians. The axial, lateral,

and transverse displacements are nondimensionalized as follows:

u V w

= g 9 e @ g (2.41)

Let us divide Eq. (2.3) by g and note that

Thus the dimensionless displacement field for the first-order shear deformation

beam theory becomes

z f] z OT(i) (2.42a)_(_,9,z) = _(_)+ Z(_)+2¢(_) rlr_ g_ 0--7

Z T(_2) (2.42b)9(_,_,z) = _(_) - -_

W(_,9,z) = e(_)+ _(_) (2.42c)
rl r2
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2.6.2 Dimensionless Strains

The displacement gradients given in Eel. (2.10) are expressed in terms of the nondi-

mensiona] quantities as follows:

OU 00
= _ (2.43a)

g_ = Ox O_

OV OV
g2 = 0---_-= 0--_ (2.43b)

OW OlTV

93 -- OX OYC (2.43C)

OU 00
- r_ r2 (2.43d)

g4 - Oy

OV 09
= rl r2 (2.43e)

95 = Oy Ofl

OW OW
- - (2.43f)

g6 Oy rl r_ 09

OU O(7

97 = 0--_-= g 0---_- (2.43g)

OV OV
9s - Oz - g Oz (2.43h)

ow oW

g9 = Oz - g Oz (2.43i)

Thus dimensionless nonzero midplane linear strains can be expressed in terms of

the dimensionless quantities as follows:

-L 0fi _ 0/3 (2.44a)
e== = 0---_+ rl r2 0_,

-L 0¢ _ 027
_==- 0"2 a (2.445)rx r20_ 2

- L Off) 9 07

"Yg" = O'--_+ ¢ + _rl r2 (1 - c_) _-_ (2.44c)

-L 0V

")'2-u = O'--_+/3 (2.44d)

-.c = -(1 +a) 07 (2.44e)
I_ x Y _X
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The dimensionless nonzero midplane nonlinear strains can be expressed in terms of

the dimensionless quantities as follows:

: -- r lr 2 0X CQX -_" 7"2_" 2 0;_} J

%v = + "" _"
rl r2

(2.45a)

(2.45b)

These dimensional strain quantities are related to the nondimensional strains as

follows:

_L

eL : gL _L = __ ,_,L _- ,_L 6NL = gNL ,_NL = _NL (2.46)
g

2.6.3 Dimensionless Constitutive Equations

The integration of the stresses through the thickness leads to the laminated consti-

tutive equations, which is expressed in terms of the 3 × 3 extensional, extensional-

bending coupling, and bending stiffness matrices as follows:

N = A6 °+B_° (2.47a)

M = B6 ° + D_° (2.47b)

We nondimensionalize the stress resultants as follows:

N M
1VI= -- (2.48)

Euu h Euu h 2



2.6. NONDIMENSIONALIZATION 42

Thus Eq. (2.47) can be written as

N A B R°
-- e° + (2.49a)

Ey_h Eyuh Eyyh g

M B D R°

E_yh 2 - Evyh 2g°+Ey_h 2 g (2.49b)

Note that the underlined terms can be rearranged and expressed in terms of di-

mensionless quantities, given by Eq. (2.39), as follows:

B R° B h R ° B 1

E_yh _ =Eyyh 2 _ _:_h 2rl
_O

D _o Dh Ro D 1
_ _O

Eyyh 2 _ E_h 3 g Eyyh 3rl

(2.50)

Let us define the dimensionless 3 × 3 extensional, extensional-bending coupling, and

bending stiffness matrices as follows:

A 1 B 1 D

/k = Eyy h 1] = h2 D = (2.51)-- rl E_ r_ E_ ha

In order to express the laminated constitutive equations in terms of the dimen-

sionless extensional, extensional-bending coupling, and bending stiffness matrices,

we multiply Eq. (2.49b) by 1/rl. Then the dimensionless laminated constitutive

equations are expressed as follows:

N = _Ago + t]Ro (2.52a)

11_ = I3g ° +_)R ° (2.525)
rl

_0

The condensation of ¢yy and gu_ can be done in the same way as explained in

Appendix B.2. Similarly, the dimensionless constitutive relation for the transverse
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shear resultant of the laminated beams here considered becomes

Qx Qx Ks- -°= _ = Dcs_ %z
E_ h

(2.53)

Thus the dimensionless laminate constitutive equations in Eq. (2.38) becomes

_2g

l_lSz x / r l

Mz_/rl

Cl I

cl2

---- Dcl3

cl4

0

b_,_ b_,_ b_. 0

0 0 0 /<8 D_5

(2.54)

In this work, the dimensionless generalized stress vector will be defined as

T1

T3

T4

.T5

, = M::/rl l>

//
Q: /

(2.55)

and the corresponding dimensionless generalized strain vector as

I _o
E2 I Ix /

-L _+< 0 >#_xx

-L 0
#_xy

,_,L 0

eL _NL

(2.56)

where the above dimensionless linear and nonlinear midplane strains are given by

Eqs. (2.44) and (2.45).
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2.7 Transverse Shear Correction Factor

The first-order Mindlin theory assumes that the transverse shear strain and thus

the transverse shear stress are constant along the thickness direction. However, the

actual variation of the transverse shear stresses is not constant and this can lead

to significant discrepancies for unsymmetrically laminated beams (Madabhusi and

Davalos, 1996). To overcome this problem, one can use the transverse shear strain

energy of the first order theory and compare it to the transverse shear strain energy

of a more accurate shear distribution. This comparison will yield an effective shear

correction factor.

A common practice for obtaining a more accurate transverse shear correction

factor is to obtain the transverse shear stresses by directly integrating the equilib-

rium equations with respect to the thickness coordinate and assuming the inplane

stresses vary linearly in z. In doing so, constants are introduced which are nor-

mally determined from the zero shear traction condition at the bottom surface of

the laminate. From equilibrium point of view, the transverse shear stress should

vanish at the top and bottom of the plate. Researchers such as Madabhusi and

Davalos (1996) have derived a general expression for the shear correction factor of

laminated rectangular beams with arbitrary lay-up configurations using this pro-

cedure. However, their formulation does not guarantee the shear stress Sx_ to be

zero at the top.

As opposed to the above approach, Cohen (1978) provides a systematic method

to compute the three shear stiffnesses A44, A45, and A_5. Cohen's formulation is

based on Taylor series expansion about a generic point for stress resultants and

couples which identically satisfy plate equilibrium equations. By applying Cas-

tigliano's theorem of least work, the statically admissible transverse shear stress

distribution is determined. We use Cohen's procedure, and apply the procedure to

laminated beams, to calculate the shear correction factor for laminated beams.
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2.7.1 Constant Transverse Shear Stress Distribution

The transverse shear strain energy density, per unit area, for a constant transverse

shear stress distribution is

1 fh/2

Using Eqs. (2.32) and (2.25) we get

1 fhl2 Qx= Sxz - dz =
[/'shear -2 J-h�2 K, D,_5

Sx_._Ldz (2.57)

1 Qx fh/2 1 Q_
S_dz .... (2.58)

2 Ks Dc55 /j_h/2 2 Ks Dc_5

Although the shear strain 7_ is zero for our displacement field, we assume it as

nonzero and further assume the shear stress Sy_ is negligible (Sy2 _ 0). Thus the

constitutive relation for the transverse shear, given in Eq. (2.25), reduces to

= __ _L=G_L
s_z _ Q.]

(2.59)

where G is the equivalent shear modulus and is piecewise constant in z (Reddy,

1997).

2.7.2 Actual Transverse Shear Stress Distribution

The transverse shear strain energy density, per unit area, for the actual variation

of the transverse shear stress through the thickness is

I f h/2 1 fh/2 ,92 dz (2.60)
= Sx_ G -1 S_z dz = _ J-h�2 -GU,,h,,_,r 2 J-h/_

Now we proceed to highlight the steps suggested by Cohen (1978) to calculate

the above integral. The transverse shear stress S_ is obtained by integrating the
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three-dimensional equilibrium equation (Whitney, 1987):

OS=z OS== OS_
= (2.61)

c_z Ox by

f fS_, - 0 S_= d( - c3 S=y d( (2.62)
C_X hi2 -_Y hi2

Note that for the sake of convenience we have substituted z for ¢" in the integrand

of Eq. (2.62). Now we proceed to calculate the stresses Sx= and S=_. To do so, we

assume that the two-dimensional constitutive equations for stretching and bending

can be expressed as the usual linear distribution of strain:

e = ¢o + _._o (2.63)

Now Eq. (2.24) becomes

S=QeO+_Q_ °

The integration of the above equation through the thickness leads to

(264)

N = Ae° + B_° (2.65a)

M = Be ° + D_° (2.65b)

where A, B, D are the 3 x 3 extensional, extensional-bending coupling, and bending

stiffness matrices. The inverted relation of Eq. (2.65) is given as

¢o = A'N+ B*M (2.66a)

_o = B* N + D* M (2.66b)

Substituting Eq. (2.66) into Eq. (2.64), we get

f(1) f(2)

(2.67)
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where S, N, M are 3 × 1 vectors, and f(1), f(2) are 3 × 3 matrices. The 3 × 3 A, B,

matrices are calculated as follows:

D* = [D-BA-1B] -1

B* = -A -1 BD*

A* = [I-B*B]A -1

Now we substitute Eq. (2.67) into Eq. (2.62). Note that only the matrices f(1) and

f(2) are functions of _. Thus these can be integrated in the thickness direction and

expressed as

z
F(1) - f(1)(_) d_

h/2
F(2) = f(2)(¢) d_

h/2

As a consequence, Eq. (2.62) becomes

--- (F_O ) Nxx _- :_P(1) Nyy"_- F:l) Nxy)12S=z= Oz

0 /_(2) _(2) Myy + _(2) )Oy \" 11 M_x + • 12 " 13 Mxy

and taking the partial derivatives, we get

S:z - _) N:=,: + F:_) Nuu,: +: la N:y,:
(2.6s)
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The partial derivatives of the stress resultants are calculated by satisfying the equa-

tions of equilibrium (Whitney, 1987):

N_,_ + N_y,_ = 0 (2.69a)

Nx_,x + Nyy,y = 0 (2.69b)

Qx,_ + Q_,y = 0 (2.69c)

Mx_,_ + M_y,y = Q_ (2.69d)

M_y,x + M_,_ = Qy (2.69e)

The above equations are satisfied by expanding the stress measures in Taylor series

about the reference axis and only keeping the first-order terms in the expansion for

N and M:

N_ = clx+dly (2.70a)

l_y = al x + bl y (2.70b)

N_ = -blx-cly (2.70c)

M_ = (c2+Q_)z+d2y (2.70d)

M_ = a2z+(52+Q_)y (2.70e)

M_ = -b2x-c_y (2.70f)

For the case of laminated beams we assumed that Nu_ = Muu = Qy --- 0. Under

this assumption it can be shown that bl = b2 = 0.

Substituting Eq. (2.70) into Eq. (2.68), and using the assumptions of laminated

beams, we obtain a statically admissible transverse shear stress distribution. The

result can be expressed as follows:

= + a2 2 (2.71)
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where _i is the 2 × 1 coefficient vector defined as

The 1 × 2 vectors al, a2 are functions of z and contain the polynomials correspond-

ing to the coefficients _i. The 1 × 1 vector fl is also a function of z. These are

obtained using the symbolic processor MATHEMATICA I and are given as

hkll h_1311 z2t311

v _ + z kll 8 + ---K-
Clt 1 =

0

h 2 633 Z 2 633

8 2

_ = h_613 z_61_

8 +_

h I3a_
Z B33

2

hBI3
+ _ + z ]313

2

h 2 611 Z 2 611 h I_11

8 2 2

1
The substitution of Eq. (2.71) into Eq. (2.60) gives the transverse shear strain

energy per unit area. Cohen (1978) suggests expressing this transverse shear strain

energy density as

1QTcQ1 xTAx + xT]_ Q + (2.72)

where A is a 4 × 4 matrix defined as

A= -_w2 A22 where A_i= _- dz
-hi2

1A registered trademark of Wolfram Research, Inc.
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is a 4 × 1 vector defined as

]_ = ]32 where Bi = ot_.___ dz
-hi2

C is a 1 × 1 matrix defined as

h/2

C : / _T G _ dz

-h/2

X is a 4 × 1 vector defined as

and Q is a 1 × 1 vector defined as

Q=Q_

Note that the integration for/_U, t31, and C must be done laminawise. The details

of the derivation and the coefficients of the above matrices and vectors are given in

Appendix B.3.

Since the shear stress distribution Sx_ is statically correct for all values of X, it

follows from Castigliano's theorem of least work (Timoshenko and Goodier, 1970)

that the proper values of X are those which minimize U_he_r. The minimization of

Eq. (2.72) with respect to X are the stationary values of the transverse shear strain

energy density. In other words,

G_Vshear
-AX+]_Q= 0 _ AX= -_Q

ox

Two possibilities exist: when A is nonsingular and when A is singular. Cohen
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(1978) provides the complementary transverse shear strain energy for both of these

cases.

(i) A is a nonsingular matrix: IA] ¢ 0

1Q, [c - s TA-1 s] Q (2.73)
Ushear=

(ii) A is a singular matrix: IAI = 0

First calculate the eigenvalues and eigenvectors of A. Let ¢ be the orthogonal

4 x 4 matrix whose columns are orthonormal eigenvectors of A. Thus,

CT A ¢ = A (2.74)

where A is the 4 x 4 diagonal matrix containing the eigenvalues and the ith diagonal

element corresponds to the i th column of ¢. Now let us suppose there are p zero

eigenvalues for p < 4. Then we eliminate the columns of the eigenvector matrix

corresponding to these zero eigenvalues. This will lead to a 4 x (4 - p) matrix _p.

Now, we obtain the new (4 - p) x (4 - p) diagonal matrix Ap by retaining only the

(4 - p) nonzero diagonals.

Next we proceed to calculate ._-1 (a 4 x 4 matrix), known as the natural inverse

of A, as follows:
T

_-1 = ,I,p A_ 1 ,I,p

Then the solution proceeds as before:

1QT [C- ST£-1 _] Q
Ushear=

(2.75)

(2.76)
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2.7.3 Energy Equivalence Principle

Note that in general the transverse shear strain energy density due to the actual

transverse shear stress distribution can be written as

1

vsho_= _ Q_ (c - _T _-1_) (2.77)

Now, equating Eq. (2.77) and Eq. (2.58), we get the following:

1 (2.78)
K8= Dc_5(C- S_',_-I S)

2.8 Generalized Principle of Virtual Work

The equations of motion for the deformed body in Fig. 2.2 can be developed using

the principle of virtual work. Virtual work is defined as the work done by actual

forces in displacing the body through virtual displacements that are consistent with

the geometric constraints imposed on the body and possess sufficient continuity

to compute virtual strains. The principle of virtual work states that a body is

in equilibrium if and only if the virtual work of all forces is zero for any virtual

displacement. Moreover, the principle of virtual work can be extended for dynamic

analysis and nonconservative loads. Thus in this work, we use the generalized

principle of virtual work (GPVW), or the extended Hamiltonian's principle, and

define it as follows:

_0 T {--5_)ext -_- 5_/_int -- 5K: -- 5_/_nc } dt = 0
(2.79)

where 5YYe_t is the virtual work done by external forces, 5"_4;intthe virtual work done

by internal force, 5/(: the virtual kinetic energy, and 5YVn¢ the virtual work done

by nonconservative forces. In this section, we derive this expression and further
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nondimensionalize them.

2.8.1 Virtual Kinetic Energy

The virtual kinetic energy is given by

F

Substituting the displacement field described in Eq. (2.3), we get

r (2.sl)

+ (_ - z _) (_ - z _) + (w+ y_) (_w+ y_) I
dF

Now, expanding the above equation, we get:

F

(u+_+ z_- zy_+')2_¢+(_- z+)_+

+(_+_+ z+- zy+')(-z_+')

5w + (-ziJ + z2 _ + yCv + y2 _) 5_} dr+ (_b + y ;r)

The underlined terms are ignored because it is assumed that the contribution of the

warping function to the overall kinetic energy is very small. Also, recalling that,

in the GPVW, the virtual kinetic energy is integrated over the time domain, we
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integrate by parts with respect to time to express the virtual velocities in terms of

virtual displacements. Thus,

f0 T

T e h/2 b/2

0 0 -h/2 -b/2

÷,{(_-z,.),,+(,+z_),_÷(_-z0 ,°}
t=T

+/(t) ,=o

dy dz dx dt

where p is the mass density, h the total thickness, b the total width, and / the

total length. Note that the underlined terms in the above expression vanish as they

are integrated through the width. The double underlined term is ignored because

its contribution is assumed negligible, i.e., z;# << _. The boundary term f(t)

is evaluated at two different times and vanishes because the Hamilton's principle

assumes that the actual dynamic path coincides with the varied path at the two

time instants t = 0, T. The above equation can also be written as

T

SIC dt
0

T l

0 0

÷(-i,,÷,.,_,,÷(I,,÷,,_),o÷(,_),_},.,,
(2.82)

where Io, I1, /2 are the mass moments of inertia, J_ is the polar mass moment of

inertia, and J_ is the inplane mass moment of inertia. The integration of the above

mass inertias through the laminate thickness requires a laminawise integration.
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These are defined as follows:

fh/2 fb/2 p dy dz
Io = .I-h/2 J-b�2

fh/2fb/2I1 = p z dy dz
J-h�2 J-b�2

fhl2fbl2
I2 = J-hi2 J-hi2

J_ = J-h�2 .I-b/_

J_ = J-hi2 J-hi2

p z 2 dy dz

b2

p (y_+ 2) aydz = _Io

b2

p y2 dy dz = -i-_Io

Nlam

= b_ pk(zk+,- zk) (2.83)
k=l

= __ p' -- (2.84)
k=l

k=l

+/2 (2.86)

(2.87)

where Win m is the number of plies. Kapania and Ra_iti (1989a) assumed the polar

mass moment of inertia as Jx = b2/o/12. However, for rectangular cross sections

this is not true. Thus, here we include the complete expression for Jx.

Since the virtual kinetic energy in Eq. (2.82) is only a function of acceleration,

let us define the contribution of the virtual kinetic energy in Eq. (2.79) in terms of

the virtual work done by inertial forces as follows:

/oT /o /o /o'_Id dt = _}'_iner dt= - 5d T M _] dx dt (2.88)

where 5Winer is the virtual work done by inertial forces. Thus Eq. (2.79) becomes

_o T {-SWext "_-5Wint - 5Wirier - 5Wnc } --= (2.89)dt 0

Now we proceed to nondimensionalize the virtual kinetic energy. The mass

moments of inertia, the polar mass moment of inertia, and the inplane mass moment
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of inertia are nondimensionalized as follows:

-TO il = IX /2
[o = pbh pbh2 [2 = pbh a

(2.90)

J_ 1 io+rgi2 jy_ Ju 1
J_ = p'_ h- 12 pbah- 12

The limits of integration are changed as follows:

/o (2.91)

x = g2, =_ dx = gd2

Thus Eq. (2.82) is expressed as follows:

1

0

.-_.- (pbheZo_)- pbh211 T) e(5_"_ (pbheIo_)) e(5_2

+ (_Obh_ei,O+pb_hL._) _+ (pbh2ell_+Obh3h¢) (sij

Now we factor out p b h ga to get

1

(sW_n.. = - pbhg a 10fi+_[1¢ (5_+ ioV- --[ il r 5_ +
0

+ --7i19+ JxT (5:/-+ _/1'5+ i2¢ (55

Using the dimensionless quantities defined in Eq. (2.39), and further expressing the
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result in matrix form, we get

P 1

6_4;iner = -p b h 23 / (_aw M'-d d_

J0

where

(2.92)

(2.93)

M=

io o o o EL o
7"1

1 -
0 io 0 --- 11 0 0

o o io o o o

o 1L o 1

-r-: r_r---_Jx o 0
1il 0 0 0

1

rl r_ I2 0
1

0 0 0 0 0 22Jy
rl r2

(2.94)

It should be noted that the mass of the system is positive and that M is a symmetric

and positive definite matrix.

2.8.2 Virtual Work done by External Forces

The virtual work done by external forces, in the absence of body forces, can be

written as

fi

(2.95)
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where tj are the dimensionless forces acting on the surface of the structure and 5dj

the dimensionless virtual displacements.

2.8.3 Virtual Work done by Internal Forces

The virtual work done by internal forces can be written as

(_Vint--_ f/fSjSejd_ (2.96)

P

where Sj are the PK2 stresses and are energetically conjugate to ej, which are the

Green-Lagrange strains. The virtual work done by internal forces is expressed as

5Wilt = Nxx 5¢0x + N_y 57_°_ + Mx_ 5_;_ + M_y 5g°_
JO J--b�2

(2.97)

+ Qx 57_z I dy dx

where e is the total length of the beam, and b the width of beam.

Now we proceed to nondimensionalize the virtual work done by internal forces.

The limits of integration are changed as follows:

x = e2 ::_ dx = tdZ y = b_ ::_ dy = bd_

Thus Eq. (2.97) becomes

(_/Vin t : E_ h N:_::Ss_ + E_y h_Nx_,5_:_ + Eu_, h 2 M:_x -_ 5R°x
ao a-1/2

1 Q_ 5%_ bgd_d2+ + - -°
J
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Let us factor out Eyy h b e from the above equation:

(_]/Vin t = Eyyh b _ gxx(_--°xx + gxy(_/;y 4- J_xx 7(_;x
JO J-1/2

+ ]f4,:_ -[ 5_;y + Q_ 5z_2_ df/dSc

h

and substitute _ for rl to get

fafll { M=:
JO J-l�2 rl

_o - -o
Jrl

(2.98)

Expressing the above equation

vector, Eq.

get

in terms of the dimensionless generalized stress

(2.55), and dimensionless generalized virtual strains, Eq. (2.56), we

_-- ¢_¢T T d_ d2
JO J--I/2

5Wint

(2.99)

2.8.4 Virtual Work done by Nonconservative Forces

The virtual work done by nonconservative forces is calculated using the definition

of virtual work,

5YVn¢ = 5dWQ (2.100)

where Q is the vector of nonconservative forces and 5d the corresponding virtual

displacements.

The types of nonconservative forces considered here are shown in Fig. 2.3. Thus,
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Figure 2.3: Laminated beam subject to a follower load

for a follower load, Q becomes

QT = fb/2
J-b�2 { -N==cos8 0 N=_sin8 0 0 0 } dy (2.101)

_d w={ _u 5v 5w 5T 6¢ 5_3 ) (2.102)

In general, the tangential follower force remains parallel to the midsurface, i.e.,

_=¢.

Let the nonconservative axial load be P = N== b. Then in order to nondimen-

sionalize the virtual work done by nonconservative force, let us express Eq. (2.101)

in terms of nondimensional quantities:

_W.¢ = 5dTQ = N----_=b cos CgSfi + N== b sinOgS_

Thus the virtual work done by nonconservative force is expressed as follows:

514;,¢ = P t (cos ¢ _fi + sin ¢ 5_)
• y •

5Wn¢

(2.103)
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2.8.5 Equations of Motion

Applying the GPVW, we get the following:

_0 T { Eyyhb_Wint-_- pbh_3f_iner - P _(_nc -b_Wext} dt : 0

Now let us divide the above equation by E_y h b t_ and multiply by (e/h) 2 to get

f0 -- __ _2 (_ext} dt = 0 (2.104)_2 p___ o Pe2 _Wn¢ h2
T ( h-2 (_]/Vint -_- Eyy h 2 (_Winer Eyy b h 2 Ey_

2.9 Summary

Since the noncognitive uncertainties are usually known in the structure's reference

configuration, the Total Lagrangian description is used because its reference con-

figuration seldom changes.

The assumed displacement field takes into account the various couplings that af-

fect laminated composites: shear-extension coupling, bending-stretching coupling,

and inplane-shear coupling. The present formulation also includes a warping func-

tion.

The Green-Lagrange strains are derived for the given displacement field. The

stresses corresponding to the Green-Lagrange strains are the second Piola-Kirchhoff

stresses. By assuming that isochoric deformation takes place, stresses in the refer-

ence configuration are zero and, considering only small strains, the PK2 and Cauchy

stresses coalesce.

The laminated constitutive law is expressed in terms of the extensional matrix

A, the extensional-bending coupling matrix B, and the bending stiffness matrix
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D. Since a one-dimensional analysis is being considered, the load conditions are

prescribed and the in-plane strain ¢y_ and the bending curvature t_uy are condensed

from the constitutive equations. This leads to the constitutive equations used

throughout this dissertation.

Finally, the equations of motion for the Total Lagrangian description using the

generalized principle of virtual work were derived. Further, these equations are

expressed in terms of nondimensional quantities.

In the next chapter, we proceed to discretize these equations.



Chapter 3

A Shear Deformable Laminated

Beam Element

Because aircraft structures consist of many irregular continuous components,

an analytical solution is almost impossible for these structures. Moreover, as men-

tioned before, composite materials have only increased the complexity of the solu-

tion. The finite element analysis has been widely used in solving such problems.

The finite element formulation can be obtained by discretizing the nondimensional

form of the generalized principle of virtual work presented in chapter 2.

In this chapter, we present the formulation of a twenty-one degree of freedom

laminated beam element that takes into account the existence of various coupling

effects, which play a major roll in laminated composite materials. This element is

valid for the static and dynamic analysis of both symmetrically and unsymmetri-

cally laminated beams.

3.1 Discretized Continuum Mechanics

In this section, we present the discretization of the beam using the Total Lagrangian

formulation.

63
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Figure 3.1: A twenty-one degree-of-freedom laminated beam element

3.1.1 Displacement Field

Since all quantities used here are nondimensional, we drop the overbar from the

displacements in Eq. (2.42). Thus the dimensionless displacement field for the

first-order shear deformation beam theory is rewritten as

__ z _3 z Or(e)
br(_,_3, z ) = _2(_)+ _ fl(5:)+ ¢(_) _ (3.1a)

rl r2 7 rl r2 e 0_

ZT(_) (3.15)f_(_,_, z) = _(_) -

W(_,_,z) = z_(5:) + _ T(_) (3.1C)
rl r2

where u is the midsurface axial displacement, v is the midsurface lateral displace-

ment, w is the midsurface transverse displacement, ¢ is the midsurface rotation of

the transverse normals with respect to x, _ is the midsurface in-plane rotation, 7-

is the midsurface twist angle, and a denotes the warping constant taking values of

0 or 1. Here we define the ratios rl and r2 as

_ h (3.2)
rl = -_- r2=

where _, h, and b are the length, thickness, and width of the beam element, re-

spectively.
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In order to develop a shear deformable laminated finite element beam, one

should avoid shear-locking (Reddy, 1993). Two methods exist to alleviate this

problem: reduced integration (RI) and consistent interpolation elements (CIE). In

this work, we use the CIE because this approach requires fewer degrees of freedom

than the R.I approach. Thus the orders of the interpolation functions are chosen to

be consistent in the computation of the strains.

To alleviate the shear-locking problem, the one-dimensional element is derived

such that it consists of four equally spaced nodes and a node at the middle as shown

in Fig. 3.1. The dimensionless nodal displacements measured at each node are: (i)

at the exterior nodes (nodes 1 and 2), axial displacement u, lateral deflection v,

transverse deflection w, rotation of the transverse normals ¢, in-plane rotation 13,

and twist angle r; (ii) at the two equally spaced interior nodes (nodes 3 and 4), the

torsion T, and the derivatives of v, w with respect to x; (iii) at the middle node in

the interior (node 5), axial displacement u, and rotations ¢ and/3. All these nodal

displacements are measured at the midsurface and are expressed as follows

qt = {Ul ,Vl, Wl, "rl, ¢1,/31, u2, v2, w2, T2, ¢2,132,

U3, V3,114, W3, W4, T3, 7"4, ¢3, _3 } T

(3.3)

The length and width of the element are nondimensionalized to unity, i.e.,

X

0 < 5: < 1 where 5: = _,

1 1 y
-- < _ < where2-

and g_, b are the actual length and width of the element, respectively.

The midplane displacements v and w are chosen to obey a cubic polynomial of

the form
3

0t(5:)= Z (3.4)
i=O
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where ai's are coefficients to be determined using the following boundary conditions:

OAt J OAt (3.5)

q3-=- 0"---_]_=I/3 q4 =- C_'---_ _=2/3

where At represents v or w. After substituting Eq. (3.4) into Eq. (3.5), the constants

ai are obtained in terms of nodal displacements q_. Thus Eq. (3.4) can be rearranged

and expressed in terms of the newly defined Lagrange polynomials as follows:

elt(:_) : (1 -43 + 95_2 - 65_3) _, + (42 - 9_ 2 + 65: 3) q2

N_) N_(_)

+ (-3_ _+ 3__) A3+ (3_ - 6__+ 3__)_o

N3 (Y:) N4 (Y:)

(3.6)

The above shape functions are shown in Figure 3.2. The fact that cubic interpola-

tion functions for w are used suggests that results will be close to those by an exact

method. Moreover, it should be noted that by using these elements one ensures

continuity in the displacements but not in their derivatives with respect to x.

Although the CIE approach suggests to use a quadratic polynomial for the

angle of twist, here we found that it does not produce good results when warping is

included. One reason for this behavior could be that the inclusion of the warping

function brings into the picture a second derivative in the curvature gx_ and this

requires a third-order polynomial to express the twist angle. Thus the twist angle T

is chosen to obey a cubic behavior and it is represented using Lagrange interpolation
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Figure 3.2: Nondimensional plot of the shape functions used to approximate the midplane

displacements v and w.

polynomials:

9 _3T(e) = 1 - +922-_2) 7-1+ (9 23 - _922
p* • ,s

T3+(-_a+18_ 2-_5:9 )

0,(2)

T4

(3.7)

The above shape functions are shown in Figure 3.3.

The axial displacement u and the shear rotations ¢ and ;3 are assumed to obey
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Figure 3.3: Nondimensional plot of the shape functions used to approximate the midplane

twist angle 7-.

a quadratic polynomial of the form

2

rh(Y:) = Zb,:V (3.8)
i=0

where rh represents ¢ or /3. Using quadratic Lagrange interpolation polynomials,

the following polynomials are obtained:

rh(_) = (1 + 2:_ 2 - 3:_) 771+ ( 2 '_'_ -- "T) _2

• ,(_) _(_)

+ (-4: +
_(_)

(3.9)
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Figure 3.4: Nondimensional plot of the shape functions used to approximate the midplane

axial displacement u and the shear rotations q_and/3.

The above shape functions are shown in Figure 3.4.

Thus the deflection behavior of the beam element for the first-order theory is

described as follows:

u(Y:) = _lul+_2u2+qd3ua (3.10a)

v(Yc) = N1 vl + N2v2 + N3v3 + N4v4 (3.10b)

w(_) = N1 wl + N2 w2 + N3 w3 + N4 w4 (3.10c)

7(_) = ¢1 _'1 + ¢2 T2 + ¢3 T3 + _4 7-4 (3.10d)

¢(X) _ kI/1 (_1 q- kI/2 ¢2 -]- _xt3 (_3 (3.10e)

fl(Y_) = _1fll + _2fl2 + k_afla (3.1Of)
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The above equation can be rearranged in matrix form as follows:

d=Nqt (3.11)

where N is the dimensionless shape function matrix, and qt is the vector containing

the dimensionless nodal displacements defined in Eq. (3.3).

3.1.2 Strain-Displacement Relation

Since the dimensionless virtual displacements are defined in the same space of

functions as the finite element space of functions, the dimensionless virtual dis-

placements corresponding to the dimensionless displacements defined in Eq. (3.11)

are

6d = N _qt (3.12)

As a consequence, the total virtual generalized strains can be expressed in terms of

the virtual linear and nonlinear dimensionless strains:

_C -_ _L + _NL (3.13a)

0$: 0_:L e 0_:NL _qt (3.13b)
= =  qOq,+

= BL 6qt + [BNL(qt)] 5qt (3.13C)

= [BL + BNL(qt)] 3qt (3.13d)
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where BL is the dimensionless strain-displacement matrix independent of the dis-

placements and BNL is the dimensionless nonlinear strain-displacement matrix lin-

early dependent on the displacements. These matrices combined lead to the strain-

displacement matrix,
0e

B.d = -- = Bt, + BNL(qt) (3.14)
0qt

where qt is the vector containing the dimensionless nodal displacements defined in

Eq. (3.3).

3.2 Discretization of the Generalized PVW

Generally, the finite element formulation is established in terms of a weak form

of the partial differential equations under consideration. In solid mechanics, this

implies the use of the principle of virtual work, or for dynamic and nonconservative

problems, GPVW. Recall, from chapter 2, the equations of motion using GPVW

were given by

fo g2 pg4 __ pg2 __ /?2 5We,:t}dt = 0 (3.15)r { _ 5_i.t + E_u h-----_ 5]/Vi.e_ E_ b h 2 5W.c Eg_ h 2

The discretization of GPVW over the domain leads to the element tangent

stiffness matrix, mass matrix, and force vector.

3.2.1 Symbolic Computation

The development of symbolic algebraic languages has made it possible to perform

complex algebraic manipulations associated with various structural analysis prob-

lems. The use of these symbolic manipulators reduces the possibility of making

errors and considerably reduces the tediousness of solving complex problems by
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hand. Moreover, the ability to develop analytical expressions for the tangent stiff-

ness matrix avoids numerical integration errors and problems.

In this work, the tangent stiffness matrix, the mass matrix, the internal force

vector, and the external force vector are all obtained using the symbolic processor

MATHEMATICA 1. By obtaining these matrices and vectors analytically, the CPU

time is reduced. This greatly saves CPU time for the Monte Carlo Simulation as

one no longer has to perform numerical integration for each case.

A very useful feature available in the symbolic processor MATHEMATICA is

that it has the capability of providing the obtained analytical expressions in FOR-

TRAN form. Thus, once the analytical expressions are obtained, these are easily

implemented into FORTRAN 90.

It would be even better to solve the entire problem using MATHEMATICA;

however, it is time consuming and almost impractical for nonlinear problems. Com-

puter programs such as FORTRAN are time-efficient in numerical calculation.

3.2.2 Mass Matrix

The virtual work done by inertial forces was defined in section 2.8.1 as

1

5Wirier= f 5aT M d
o

Using the definition for d, Eq. (3.11), the above equation becomes

5_iner = gqT [/ NTMN d2] _tt

M e

1A registered trademark of Wolfram Research, Inc.

(3.16)

(3.17)
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and M e is the dimensionless element mass matrix:

M e = NTMN d_ (3.18)

where the length of the element is nondimensionalized to unity, N is the dimen-

sionless shape function matrix, and matrix M is given by Eq. (2.94).

3.2.3 External Force Vector

The virtual work done by external forces, in the absence of body forces, can be

written as

5We_t = //SdWtd_ (3.19)

where tj are the forces acting on the surface of the structure and 5dj the dimen-

sionless virtual displacements defined in Eq. (3.12). Using the definition for d,

Eq. (3.11), the above equation becomes

8W----_ = 8qW /f NW_d_ (3.20)

F e

Thus, the element external force vector is

fl fl/2F e = NWtd_d2 (3.21)
Jo 3-1/2

where the width and the length of the beam element are nondimensionalized to

unity.
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3.2.4 Loading Stiffness Matrix

The virtual work done by nonconservative forces is usually written in terms of the

nodal displacements, i.e.,

5_.c = 5q T f.c (3.22)

where fnc are the dimensionless nonconservative force function of the nodal displace-

ments defined in Eq. (3.3) and are defined for the global system but not locally, and

5q w are the dimensionless virtual nodal displacements corresponding to the nodal

displacements corresponding to the force terms in the vector fnc. The dimensionless

loading stiffness matrix is then obtained as follows (Argyris and Symeondis, 1981):

KL = bf._ (3.23)
0qt

The above matrix for nonconservative loading is unsymmetrical and is zero conser-

vative loading. If the load is a distributed follower load, such as pressure, it can

be included on an element basis. However, this matrix is obtained from the global

nonconservative force vector. In other words, the loading stiffness matrix is added

to the global tangent stiffness matrix (after assemblage) and not locally.

Let us derive this matrix for the case of the follower load discussed in section

2.8.4. We will start with Eq. (2.100):

5_n¢ = 5d w _=IQ (3.24)

Note that the above expression is only evaluated for the element in contact with the

follower load. Thus, the virtual displacements in the above expression are obtained

by Eq. (3.12) as follows:

5dWl_=l = 5qW NT _=1 (3.25)

where N w _=1 is the transpose of the shape function matrix evaluated at the second
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Figure 3.5: Finite element for a laminated beam subject to a follower load
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node of the element,

000000100000000000000

000000010000000000000

000000001000000000000000000000100000000000

NL 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

000000000001000000000
(3.26)

and 5_ is given by Eq. (3.3). Mr sa_ of simplicity let us call the dimensionless

shape _nction matrix evalu_ed at the second node of the element as NL.

Now to calculate the dimensionless nonconservative force Q in terms of the gen-

eralized nodal displacements, we use Figure 3.5. This figure shows the deformation

of the last element at which the follower load is applied. The load rotates with

the rotation at the tip of the cantilevered beam-column. Further we assume small

rotation at the tip,

cos ¢2 _ 1 sin ¢2 _ ¢2 (3.27)

where ¢2 is the rotation of the tip. Also, note that the direction of ¢2 is taken

opposite to the one assumed in out finite element formulation, as shown in Figures

3.1 and 3.5. Thus, the dimensionless load Q is then expressed as follows:

r

1

0

0
,+

0

0

0

0

0

-¢2

0

0

0

(3.28)
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We can also express the above expression in matrix form:

Q : (_1 + (_2 qt (3.29)

where

(_T={ 1 0 0 0 0 0 }

0000000000 00000000000

0000000000 00000000000

0000000000-10000000000

0000000000 00000000000

0000000000 00000000000

0000000000 00000000000

Thus Eq. (3.24) becomes

and the dimensionless elemental nonconservative force is then defined as

(3.30)

Thus the loading stiffness matrix for the last element becomes

K_ = of_c
Oqt

^ 0(_1 ^ 0Q2qt= N - Tq

(3.31)

(3.32)
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Since the load only acts on the last finite element, the global dimensionless loading

stiffness matrix is then defined as

[00]KL = (3.33)
0 K_

3.2.5 Tangent Stiffness Matrix

From Eq. (2.99), the internal virtual work is expressed as

(3.34)

where cj are the generalized dimensionless strains given by Eq. (2.56) and T_ the

generalized dimensionless stresses given by Eq. (2.55). Using the definition of virtual

strains given by Eq. (3.13), Eq. (3.34) becomes

// 0$T_W, nt = 6q w _ W d_ (3.35)

f_t

where f_t is the internal force vector.

The dimensionless tangent stiffness matrix is given by

e e// //  ToT
---- 0qt _qt _, 0qt ] 0qt 0qt

fi fi

d_ (3.36)

Note that
0¢ OT 0¢

- Dc = Dc Bsd
0qt = Bsd and 0qt _qt

(3.37)
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Then the tangent stiffness matrix becomes

//cgB T // OeK e = _ W d_t + BTDc _qt d_ (3.38)

= _ Dc 6 d_ + Bsd De B_d d_

fi fi

Recalling that B,d = B_. + BNL, where BL is constant but BNL depends linearly

on qt, gives the well known decomposition of the element tangent stiffness matrix

K" = K h + K 5 + K 5 (3.39)

where K_, K_), and K_ denote the dimensionless element linear, initial-displacement,

and geometric stiffness matrices, respectively. These are given by

flfl/2
K_ = J0 J-1/2 BT Dc BL d_ d2 (3.40a)

: ,of'f": (3.40b)

+BTL De BNL} d9 d2

,of' Lr'oB ,.I,K 5 = T j d_d2 (3.40c)

where the width and the length of the beam element are nondimensionalized to

unity, and De is the dimensionless equivalent bending-stiffness matrix. Also, note

that 0BT_L/cgqt is independent of displacements.

Let us define the stiffness contribution of the material stiffness as the elastic

stiffness matrix (Doyle, 2001):

KE = KM + KD (3.41)
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The tangent stiffness matrix is symmetric for conservative loading. However,

for nonconservative loading it is unsymmetrical, the reason being that the loading

stiffness is added. The above formulation has also been derived using indicial

notation and it is presented in Appendix C. The convenience of indicial notation

is that it helps the programming.

3.2.6 Interior Node Condensation

The interior nodes do not connect with the adjoining elements in the assemblage.

Therefore, such internal degrees of freedom are condensed at the tangent stiffness

level and thus the stiffness matrix, mass matrix, and nodal load vector are only

expressed in terms of the corresponding exterior node displacements of the element.

In order to proceed, the displacement vector is rearranged by partitioning the

relevant terms corresponding to external and internal degrees of freedom as follows:

qt = {91,q2} T (3.42)

where ql are the exterior nodes to be kept and q2 are the interior nodes to be

condensed:

qt = {ul, vl, Wl, T1, ¢1, j31, U2, V2, W2, 7-2,¢2, f12}T (3.43)

q2 = {U3, V3, V4, W3, W4, T3, _'4, ¢3, _a} T (3.44)

Now the load vector can be partitioned in a similar way:

F = {F1, F2} T (3.45)

The element stiffness matrix and mass matrix are also rearranged and partitioned
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according to Eq. (3.42) as follows:

g

M

Kll K12 ] (3.46)K21 K22

[Mll M121M21 M_2 (3.47)

The Irons-Guyan Reduction (Irons, 1963; Irons, 1965; Guyan, 1965) for a system

of equations is described in Appendix D. Thus the condensed stiffness matrix,

condensed mass matrix, and condensed load vector are obtained as follows:

_R = KI1 - KI2 K_-_ K21 (3.48)

_l:t = Mll - K12 K_-_ M21 - M12 K2_ K21

+K12 K_-_ M22 K_-_ K21

(3.49)

_R = F1 - KI2 K_-_ F2 (3.50)

The interior node displacements can be obtained using

= -Klz K_ql (3.51)

3.2.7 Equations of Motion

Now we assemble the elemental matrices and vectors, and substitute the global

matrices and vectors into Eq. (3.15). The GPVW is now a function of the gener-

alized displacements qt, which are independent of each other. In other words, the

virtual displacements 5qt are entirely arbitrary. Thus it follows that the integral

can only be zero for all 5qt if and only if the coefficients of 5qt are identically zero

(Meirovitch, 1997). Thus the equations of motion for the global system are given
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by

Eu_ h 2 F = _-_ KE qt + _-_ KG qt E_u b h 2

w 2 p_ 1

Euu h2 M _-_ qt (3.52)

where F is the global external force vector, KE the global elastic stiffness matrix,

KG the global geometric stiffness matrix, KL the global loading stiffness matrix,

and M the global mass matrix. Assuming the length of each element is the same,

the above equation can be expressed in terms of the total length of the beam as

follows:

ge = --g (3.53)
nel

where n_z is the number of elements used. Also, recall that rl = g_/h. If we plug

the above expression into Eq. (3.52) and multiply the entire equation by 2Ttel, we get

2 2
nel

rl F 2 2 KE qt + n2_,r_ KG qt---- nel rl
P nel KL qt +

Eyu b

w2 p_

h nelEyy 2 2

1
M _ qt (3.54)

w-

Let us define the nondimensional eigenfrequencies and buckling loads as

&2 _ w2 P e4 (3.55)
Euu h 2

and the axial load as
2 r_ pg2

/5 = p net _ (3.56)
Euu b E_ b h 2

where g is the total length of the beam. Let us redefine the dimensionless vectors

and matrices as follows:

2 2 1
- net rl F I_z 2 r_ Kz 1VI M (3.57)

Eu u = nel = __-5-nel
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For the case of an axially compressed beam, the pre-equilibrium conditions yield

the following initial stress (per unit length):

T={-N_,O,O,O,O} T (3.58)

Thus the geometric matrix can be written in terms of the buckling load as follows:

2 r_P nel
Kc = Kc (3.59)

E_ b

Thus the equation of motion becomes

1

_' -- _:E qt --/5 KG qt -/5 KL qt + &2 _ _-_ qt (3.60)

3.3 Vibration and Stability Analysis

In general, for the analysis of aircraft structures, the study regarding the stabil-

ity of these structures cannot be ignored. The reason is that structures such as

wings undergo large deflections and are, in general, subject to conservative as well

as nonconservative forces. In this section, we present the equations for the free

vibration and stability analysis of laminated structures subject to conservative and

nonconservative loading using the finite element method.

3.3.1 Equation of Motion About the Equilibrium State

A structure is stable at an equilibrium state if for every small disturbance of the

system the response remains small. Thus when studying the stability and vibration

about the equilibrium state, the generalized displacements are perturbed by an

infinitesimal displacement:

qt = qo + qa (3.61)
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where qo represents the displacements in the equilibrium state, and ql the infinites-

imal perturbation. Eq. (3.61) is substituted into the equation of motion, Eq. (3.60).

Note that the mass matrix, linear stiffness matrix, geometric stiffness matrix, and

loading stiffness matrix are all independent of displacements. However, the initial

displacement matrix is the only matrix dependent on the displacements. Moreover,

this matrix depends on the linear and nonlinear strain-displacement matrices.

Since the nonlinear strain-displacement matrix is linearly dependent on dis-

placements, the nonlinear strain-displacement matrix can be expressed as

BNL = BNo d- BN_ (3.62)

On the other hand, the linear strain-displacement matrix is independent of displace-

ments. As a consequence, the initial displacement stiffness matrix is expressed as

I'_ D = //{B T Dc InN o + BN1] + [BTo + BTI] Dc BL

+ [BWo + BT1] Dc [BNo + BNI] }d_

and expanding the above we get

KD =//{BT Dc BNo + BTo DeBL + B_ o Dc BNo} d_

I_Do

"t" // {BLT Oc BN1 d- BTN1Dc BL -{'- BT10c BNo "4- BTo Dc BN1 } d_

"{-//{BT1Dc BN1 } d_

I_D2

I_D 1
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Now the equation of motion can be written as

1

I_M qt + I_D qt --/5 KG qt -- 15 KL qt + &2 h74 _-_/_t - _' = 0

I_M (q0 + ql)- /SKG (qo + qx)-/SKL (qo + ql)

1

+ [I_Do + KD, + KD,] (q0 + ql) + _b21_I (q0 + ql) _ -- _' = 0

and by expanding we get

I{M qo + I_oo qo - t5 KG qo - P KL qo + _21VI _ _io - _'
• J

vanishes because of equilibrium

+ I'_M ql + I_Do ql + I(D1 q0 -- P KG ql -- /5 KL ql + d-'2M _ ql

+ I_D1 ql + I_D2 q0 + I_I)2 ql = 0

Assuming that a trivial, rotationless, equilibrium state exists, the out-of-plane dis-

placements are zero. Note that the initial displacement matrix is only a function

of the out-of-plane displacements. Under this assumption the equation of motion

reduces to

1

KM ql --/5 KG ql -/5 K_. ql + &21VI _-_ ql + KD1 ql + KD2 q_ = 0
Y

Y • Nonlinear
Linear

(3.63)

where KG is the initial stress matrix and KL is the loading matrix. The elastic

stiffness matrix becomes

R_.. --'-- KM + KD1 + KD2 (3.64)

Moreover, for a wide range of problems it is of great interest to study the linearized

buckling and vibration problem. For the linearized case we neglect the nonlinear

terms in Eq. (3.63). In other words, we assume that the change in geometry prior
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to the first critical state can be neglected and the initial displacement matrices are

neglected, i.e.,

I(E -- KM (3.65)

Further assuming a harmonic motion with a frequency of w,

ql = 4)e_'_', (3.66)

the equations of motion to study the linearized stability and vibration about an

equilibrium state can be expressed as

KM (_ --/SK G ¢ -/5 KL 4) - &21VI_ = 0 (3.67)

3.3.2 Free Vibration Analysis

The free vibrations about the trivial equilibrium state are studied by taking/5 __ 0.

Moreover, recall that we assumed a harmonic response, thus equations of motion

result in an eigenvalue problem:

[I_M -- &21VI] 4) = 0 (3.68)

where &2 is the dimensionless eigenfrequency, and 4) the corresponding dimension-

less right eigenvector.

3.3.3 Linearized Buckling Analysis

In general, for all types of forces the dynamic analysis will always predict the buck-

ling load. The dynamic criterion considers small oscillations about the equilibrium

position, and reduces the stability problem to that of solving an eigenvalue problem
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to determine natural frequencies (&) and associated eigenmodes, i.e.,

[KM -- PKG - PKL - _21VI] _b = O

Note that the frequencies are generally complex numbers.

stability depends on the values of &2:

(3.69)

The system's dynamic

(a) &_ > 0, and purely real: The system is dynamically stable

(b) &2 = 0: The system is dynamically critical

(c) Unstable otherwise.

The dynamic criterion can be applied to both conservative and nonconservative

systems.

Conservative Loading

For the case of conservative loading, a load potential function usually exists and

KL = 0. Thus we can use the static criterion, which looks at admissible static

perturbations of an equilibrium state. This results in the following linearized eigen-

value problem:

pK ] (3 o)
Here we find a P such that the lowest eigenvalue of the tangent stiffness matrix is

zero. In light of the dynamic criterion, the buckling load is found such the system

is dynamically critical. Thus the eigenvalue problem to be solve is

[I_M -- PKa - &21VI] q_ = 0 (3.71)

where we find a/5 such that &_ = 0.
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Pnc

Figure 3.6: Subtangential Loading.

Subtangential Loading

For the generally nonconservative loading, consider a cantilevered laminated beam

subject to a combined conservative load Peon and a tangential follower force P_¢ at

the tip, as shown in Fig. 3.6. The former may be thought of as a dead load, while

the latter can be considered as a typical follower force. When working with sub-

tangential loading, where the conservative load is combined with a nonconservative

one, it is convenient to define a nonconservativeness parameter (Langthjem, 2000):

.Pnc

= & = Pooo+ Pno (3.72)
PT

where _? E R and is the nonconservativeness loading parameter, _bn_ the dimension-

less nonconservative force, /5¢on the dimensionless conservative force, and PT the

magnitude of the sum of the conservative and nonconservative loads. Note that the

value _ = 0 corresponds to a pure dead load (conservative load), r/:_ 1 corresponds

to a generally nonconservative load, and _ = 1 corresponds to a purely tangential

follower load (nonconservative load).

In general, it is sometimes convenient to define a loading matrix, L, as the

contribution of the geometric stiffness and the loading stiffness correction:

L = Ka - 7/KL (3.73)
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The loading matrix does not depend on the material nor on lamina characteristics

such as ply angle and ply thickness. It is only a function of length, width, and the

nonconservativeness parameter. Moreover, it should be noted that some authors

may define the loading matrix as L = Ka +r] Kr.. The reason for the sign difference

is that they define the loading stiffness, given by Eq. (3.23), as the negative of

the partial derivatives of the nonconservative loading vector with respect to the

generalized displacements. Although both expressions are equivalent, in this work

we will use the notation as given by Eq. (3.73).

Thus for the case of subtangential loading, the linearized eigenvalue problem

can be expressed as

Here the buckling load can be by divergence and/or flutter. We compute all the

eigenvalues w_^ 2 of Eq. (3.74) at each load step in correspondence to the deformed

configuration. Note that the total tangent stiffness matrix at each load step may

be unsymmetric for every 77> 0. Thus the stability conditions can be written as

(a)

(b)

(c)

if all &2 are real and positive numbers, then the equilibrium state is stable.

The critical load is the value of the load for which the smallest eigenfrequency

becomes zero, &_ = 0;

if all ^ 2w. are real numbers, and w 2 = 0 becomes zero, then the equilibrium state

becomes unstable and the stability transition occurs via divergence instability.

The critical load is the value of the load for which the smallest eigenfrequency

becomes zero, &_ = 0;

if at least one pair of the eigenvalues &2 &2 becomes complex conjugate,2n--l, 2n

then the equilibrium state is unstable and the stability transition occurs via

flutter instability. The critical load is the value of the load for which two

eigenfrequencies approach each other until they coalesce, &_,_-i = &2.
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Thus, we find/5 such that &22n_l - &22nor &_ = 0.

3.4 Summary

In this chapter, we have discretized the generalized principle of virtual work. By

doing do, we developed the element and global finite element matrices and vec-

tors. These were obtained through exact integration using MATHEMATICA as

the symbolic manipulator.

We also derived the equations for both free vibrations and the stability of the

equilibrium state for laminated beams subject to subtangentially loaded beams.



Chapter 4

Deterministic Finite Element

Analysis of Laminated Beams

In general, for the analysis of aircraft structures, nonlinear analysis should be

considered because structural components such as wings undergo large deflections.

The equations of motion for the study of large deflections were derived in Chapter

3 using the weak form of the generalized principle of virtual work.

For a conservative system, the only possible initial instability is of divergence

type. For a nonconservative system, however, instability can be by divergence,

flutter, or both, depending on the amount of nonconservativeness. In this chapter,

we present various results for the static and free vibration analysis of various cases

present in the literature. Then we use the dynamic method to study the stability

of conservative and nonconservative structural systems.

4.1 Case properties and definitions

The purpose of this section is to explain how the results are obtained. First we dis-

cuss how the results are nondimensionalized, then the various boundary conditions

used.

91
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4.1.1 Nondimensionalization

In the literature, researchers nondimensionalize eigenvalues and buckling loads in

two different forms. Thus throughout this dissertation the natural frequencies are

obtained in their nondimensionalized form in either of the following forms

/ _oe_ ./121oe 4

° VE  b°h o
(4.1)

and the critical loads as

/?2 12 22 (4.2)
P,_ = Pn E_bohao P,_ = Pn E_boh a

Note that the &, and/Sn are equivalent to those given in the previous chapter.

Let the dimensionless left and right eigenvectors of the k th mode be defined by

_bk and Ck, respectively. In order to normalize the left and right eigenvectors for

nonconservative systems, we need two independent criteria. Thus let us normalize

the eigenvectors such that

{¢k}T [M] {(_k} = 1 and {_k}n th nonzero element _-- { (_k}nth nonzero element

for a selected value n. In other words, we know that we can multiply the eigenvectors

by any arbitrary scalar:

{(_k} = a {(_k} {_bk} = b {_bk}

Then the second condition suggests

a _bk(n ) ----b_bk(n) =_
a = b Ck(n) (4.3)

_bk(n)



_,.I. CASE PROPERTIES AND DEFINITIONS
| f

93

and the first one suggests

ab {¢k} TIM] {¢k} = 1
1

=_ ab = {¢k} T [M] {¢k) (4.4)

Using Eqs. (4.3) and (4.4), we get the normalization constants a and b:

/¢k(n) 1 b: /¢k(n) 1 (4.5)

a = V¢----_ {¢k} T[M] {¢k} V_---_ {¢k} T [M] {¢k}

For conservative problems, the left and right eigenvectors are equal. Thus only one

criterion is needed and in fact

a_-b_
_/ 1 (4.6){¢k} T[M] {¢k}

4.1.2 Boundary Conditions

For the types of problems treated in this dissertation, we consider three sets of

boundary conditions. These sets of boundary conditions are shown in Fig. 4.1 and

are given as: hinged-hinged, clamped-free, and clamped-clamped. In all cases the

load is applied at the tip of the beam (x = g). The consequences of these boundary

conditions on the generalized midplane displacements are:

Clamped-Free: u=v=w=_'=¢=/3=0 (x=0)

Clamped-Clamped:
u=v=w=r=¢=Z=Ov=w=r=¢=Z=O
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_ w_) Hinged-Hinged P

z, w(x)

x

Clamped-Free

._- p

z, w(x)

X

Clamped-Clamped

P

Figure 4.1: Boundary conditions used for the analysis of laminated beams.
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f

Ju=v=w=T=0 (x=0)Hinged-Hinged:

t v w T 0 (z _)

For nonconservative problems, only cantilever (clamped-free) laminated beams were

considered.

4.1.3 Computer Program: NLbeam21.f

In this work, the symbolic program MATHEMATICA is an interface to FORTRAN

90. The MATHEMATICA file NLbeam21.nb is used to calculate all the element

matrices and vectors symbolically and printed in Fortran-form. Once these matrices

are available they are then inserted into the FORTRAN program NLbeam21.].

The FORTRAN program NLbeam21.f is written entirely in double precision

and works as the pre-processor, processor, and post-processor. The code reads the

input file NLbeam21.dat, which provides all the necessary information to perform

the wanted analysis. The program NLbeam21.f uses LAPACK 90 libraries 1 to

solve the eigenvMue problem. A copy of the code can be obtained by contacting

the author or the Aerospace and Ocean Engineering Department here at Virginia

Tech.

4.1.4 Stability Analysis Using ABAQUS

The buckling and flutter loads obtained with our computer program are verified

with those using the finite element package ABAQUS. The preprocessing is done in

1These libraries are available online: http://www.fortran.com
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PATRAN and the output is fed into ABAQUS for processing and post-processing.

We had no problem in finding the buckling load in ABAQUS. On the other

hand, the flutter load was challenging because ABAQUS (i) cannot solve for flutter

load, (ii) its eigensolver has problems when frequencies are very close to each other

(ABAQUS User's Manual, 1998), and (iii) requires a lot of elements to achieve

convergence.

In order to approximate the critical load in ABAQUS, we found an alternative

way of doing so. First, we apply a small eccentricity to the applied axial load by

adding an offset to the midsurface. This can be achieved by adding the OFFSET

command in the ABAQUS' input file as follows:

*SHELL SECTION, COMPOSITE, ELSET=LAMBEAM, OFFSET=-O.I

In order to model subtangential forces, say _ = 0.6, we add the following lines to

the input file:

*NSET, NSET=FUERZA, GENERATE

151, 156, 1

*STEP, UNSYMM=YES, NLGEOM, INC=IO000

*STATIC

1.0, 100, , 1.0

*CLOAD, FOLLOWER

FUERZA, I, -60.0

*CLOAD

FUEKZA, 1, -40.0

*RESTART, WRITE, FKEQ=2

*NODE FILE

U, CF

*ENERGY FILE

*ENERGY PRINT

*END STEP
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Figure 4.2: Al)im_xinmt, ing the [h,tt.er lo_td in ABAQUS.

Finally, we p(uform a "post-buckling" type analysis t_) detm'nfine the flutter h)a(l.

Figure 4.2 illustrates this method. We know that at the oil,,-;(,! of fllltler, th(, trans-

verse displacement at the tip of the cantilevered beam is minimum. After we haw,

reached flutter and we increase the h_ad, the beam will shift m_utes. In _ther words,

the tip displacement will increa,se. This will be t,t,, flutter loacl.

It, should be noted that Af3A(,]US <hu's not haw, a lamimm'd b_,am element,

and the only possibility is to use a shell ehunent, sm'h as S4R, to moch,l the can-

tilevered lmninatcd beam. Some advantages of our program are that we can plot.

the flmdamental cha.racterist, ic curves and solve for the cliw,rgence or flut.t.er h_a_ls

without problems because the eigensolww built in LAPACK h_m rio Im_bh'ms when

two frequencies are close to each other {even when they are identical), and only live

elements are required to achieve convergence.
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4.2 Case I: Conservative

To study the stability of conservative systems using the dynamic criterion, the

following eigenvalue problem is solved:

I(M -- P KG - &21QI]_ = 0

^2 forWe find a /Sn such that ^ 2 O. In the free vibration analysis we find a _nO) n ----

P=O.

4.2.1 Isotropic Beams

To validate the present shear deformable laminated beam element, we studied the

cases for isotropic beams and compared the results to those by Euler (classical

buckling loads). The laminated beam element was treated as an isotropic material

with the following mechanical properties:

uxy = Uxz = Uyz =0

Exx _ 1.00 G_y _ Gxz Gyz = 0.50

Only one ply was considered for the isotropic case with the following geometric

properties:
ho
-- = 0.5 bo = 0.1 ft
bo

For the isotropic case, any value of the ply angle produces the same result. All

results are compared to those by an analytical solution (Meirovitch, 1997; Jones,

2001).
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Cantilevered Beams

The first two dimensionless natural frequencies for the isotropic cantilevered beam

are

Analytical: Wz = 3.516 &2 = 22.03

Present: &l = 3.516 &2 = 22.03

The first two dimensionless critical loads for the isotropic cantilevered beam are

Analytical: P1 = 2.467 /52 = 22.21

Present: /51 = 2.467 /52 -- 22.22

Figure 4.3 shows that the mode shapes are in perfect agreement with those given

in the literature.

Clamped-Clamped Beams

The first two dimensionless natural frequencies for the isotropic clamped-clamped

beam are

Analytical: &l = 22.37 &2 = 61.70

Present: &l = 22.35 5_2 = 61.70

The first two dimensionless critical loads for the isotropic clamped-clamped beam

are

Analytical: /51 = 39.48 t52 = 80.73

Present: /51 = 39.52 /52 = 81.32
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Figure 4.4 shows that the mode shapes are in very good agreement with those given

in the literature.

Simply-Supported Beam

The first two dimensionless natural frequencies for the isotropic simply-supported

beam are

Analytical: &l = 9.870 &2 = 39.48

Present: wl = 9.870 &2 = 39.52

The first two dimensionless critical loads for the isotropic simply-supported beam

are:

Analytical: /51 = 9.870 /52 = 39.48

Present: /51 = 9.870 /52 = 39.52

Figure 4.5 shows that the mode shapes are in very good agreement with those given

in the literature.

Results for both dimensionless natural frequencies and buckling loads are in

good agreement with those of the exact solutions for all three boundary conditions

mentioned above.

4.2.2 Laminated Beams

Next, the results for various laminated beams were compared with those by Maiti

and Sinha (1994), and Reddy (1997). The mechanical properties for laminated
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beams as given by Maiti and Sinha (1994) are

Ex_____= 13.70880 Gx__/_= 0.54710 Gx_ _ 0.45679 Gu_____= 0.26964

Euy E_ E_u Euy

with

kg
Eu_ = 9.42512 x 109 Pa p = 1550.0666 m3 uxu 0.30

and the geometric properties are

ho

-- = 0.3175 bo = 0.01 m
bo

and the slender ratio _./ho and ply angles _ are individually specified for each

problem. Here ho represents the total thickness of the beam and each ply is assumed

to have the same thickness. Thus the thickness of each ply is calculated as hn =

ho/Nl_m, where Nl_m is the total number of plies.

The mechanical properties for laminated beams as given by Reddy (1997) are

Ex_ 25.00 Gx_ 0.50 Gx_ 0.50 Gy_ _ 0.20
E_ Ey_ Eyy E_y

with

Eyy = 1.9584 x l0 s psf
slugs

p = 0.250387 ft------/- u_ = 0.25

and the geometric properties are

ho

-- = 0.50 bo = 0.1 ff
bo

and the slender ratio e/ho and ply angles 8i are individually specified for each

problem. Thus the thickness of each ply is calculated as hn = ho/Nlam, where Nl_m

is the total number of plies.
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The ply and the beam's mechanical and geometrical properties are assumed to

be uniform throughout the beam. The properties are given as a footnote to the

table in which results for a given example are presented. All results are obtained

with five elements.

We proceed to calculate the dimensionless natural frequencies for various unidi-

rectional laminated beams and all three boundary conditions previously mentioned.

Table 4.1 contains the results with warping and without warping. Results shows

that the dimensionless natural frequencies are in very good agreement with the re-

sults obtained by Maiti and Sinha (1994). In fact, although they used a nine-noded

rectangular isoparametric element, our results using a one-dimensional FSDT beam

theory compare well with theirs.

Also, results show the importance of including the warping function in a lam-

inated beam element. When warping is neglected, the bending term (bo D66) gets

modified to (bo D_6 + As_ bo2/12), leading to very high frequencies. The proposed

warping function removes this addition to D_6, and thus leads to very good results.

The small discrepancy has to do with the fact that we are modeling the plate strip

using a beam element, whereas Maiti and Sinha modeled it using a plate element.

For all cases shown in Table 4.1, it can be seen that as we increase the ply

angle from 0 ° to 90 °, the dimensionless natural frequency decreases. Thus the fiber

orientation plays an important role in the design of laminated structures. One must

be aware that the fundamental natural frequency may decrease or increase with a

change in the ply angle.

In Tables 4.2, 4.3, and 4.4 we compare various cases of laminated beams studied

by Reddy (1997). The dimensionless fundamental natural frequencies and critical

buckling loads are in good agreement with those obtained by Reddy (1997). The

results for the simply-supported laminated beam seem to compare not that well

with those by Reddy (1997). One reason could be that Reddy (1997) does not take
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into account the various coupling effects as is the case for the present study. On

the other hand, our results are in good agreement with those presented by Maiti

and Sinha (1994), see Tables 4.5 and 4.6.

Table 4.5 shows results for various symmetrically and unsymmetrically lami-

nated beams. Once again, results are in very good agreement with those by Maiti

and Sinha (1994). The results show that as the length-to-thickness ratio increases,

the dimensionless natural frequency approaches an asymptotical value. A com-

parison of Tables 4.1 and 4.5 shows that when unidirectional laminated beams

are sandwiched with two plies of 0 °, while keeping the beam's material and ge-

ometric properties the same, the natural frequency increases when compared to

undirectional laminated beams. Moreover, the frequencies are very close to those

by obtained with a 0 ° laminate.

We also present the buckling loads for each of the cases presented by Maiti

and Sinha (1994). These results are tabulated in Table 4.7. As in the case of free

vibrations, the results show that the warping effects lead to lower dimensionless

buckling loads. This is especially the case for unidirectional plies of 0 = 30 ° and

45 ° . Also, the buckling load increases as the unidirectional plies are sandwiched

with two plies of 0 °, while keeping the the beam's mechanical properties the same.

Since results presented in Tables 4.1, 4.5, and 4.7 show that warping is extremely

important for a unidirectional beam with a ply of 30 ° layout, we also checked the

first two mode shapes related to this case. Figure 4.6 shows that the fundamental

vibration and buckling modes are not affected by warping, although the natural

frequencies and buckling loads are. However, the second buckling mode is slightly

affected. This shows that warping can affect higher buckling loads as well as the

mode shapes.

All these results were obtained using our dimensionless finite element formu-

lation. In the dimensional model, the stiffness matrix may have coefficients with
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large differences in the order of magnitude from than others within the matrix. The

same may be true for the mass matrix. An advantage of the dimensionless model

over the dimensional one is that the elements of the stiffness matrix are of the same

order of magnitude. The same is also true for the mass matrix. The results for

the cases presented by Goyal and Kapania (2002) using a dimensional finite ele-

ment formulation were in perfect agreement with those presented here when using

a dimensionless finite element analysis.

We also studied the case when a unidirectional laminated beam is subject to

a pure dead load weight (_ = 0) with warping included (_ = 1). The mechanical

properties for the single-ply laminated beam, as given by Xiong and Wang (1987),

are

Ex____._= 3.4339623 Gx______y= 0.4462264 Gxz _ 0.4462264 Guz
Ey_ Ey_ E_ Ey_

- 0.3707547

with

Ev_ = 0.10388 x 109 Pa
kg

p = 1860.0 m----_ uxy = 0.33

and the geometric properties are

ho 0.25 t - 10.0 bo
bo ho

= 0.02 m

and the ply angle _ takes values of 0°, 15 °, 30 °, 60 °, and 90 °.

the total thickness of the beam.

Here ho represents

Figure 4.7 shows the characteristic curves for the fundamental buckling load

for unidirectional cantilevered laminated beams subject to a conservative load-

ing. Results show very good agreement with those obtained using ABAQUS. Plots

show that the ply orientations play a significant role in the stability of unidirec-

tional laminated beams. For the conservative case, the fundamental dimensionless
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4.3 Case II: Generally Nonconservative

Since it was shown in the previous section that warping effects are important in the

analysis of laminated composite beams, hereon the analysis will include warping.

In other words, we take the warping constant to have the following value:

a=l

When the beam is subject to subtangential loading, the linearized eigenvalue

problem can be expressed as

where

L = KG -- 71KL

and z/ is the nonconservativeness loading parameter. Here we find /_. such that

^2 forP O.2 = O. In the free vibration analysis we find w n =

4.3.1 Isotropic Beams

The geometric and material properties for isotropic beams are the same as those

used for the conservative case. Here we consider the case of a generally noncon-

servative system. The load becomes nonconservative as the nonconservativeness

loading parameter _ takes values other than zero. We plotted several character-

istic curves corresponding to different values of 7?. Results are shown in Fig. 4.9

and are in perfect agreement with those presented by Gasparini et al. (1995). Al-

though Gasparini et al. (1995) used twenty finite elements for their analysis, here

five elements were sufficient for convergence.
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Figure 4.9 is composed of two figures. Figure 4.9(a) shows the complete plot

of the characteristic curves, whereas Fig. 4.9(b) shows the regions of interest in an

expanded form. As seen in these figures, the buckling load decreases as the loading

parameter decreases. As Fig. 4.9 shows, the fundamental characteristic curves for

the various values of _ intersect at the flutter load when _ = 0.5. The dimensionless

flutter load at 77= 0.5 is/5 = 16.2.

The value of the nonconservative parameter _ for a particular problem is very

important in design. The reason is that by knowing how nonconservative the load

is, one can predict if the instability will occur due to divergence or flutter. In

the case of cantilevered isotropic beams with constant cross sectional material and

geometric properties, and in the absence of damping, all values of _ _< 0.5 will lead

to a divergence type instability; and to a flutter type instability otherwise.

The flutter load and fundamental frequency modes for the case of purely non-

conservative load are shown in Fig. 4.10.

4.3.2 Laminated Beams

In the literature, little attention has been paid to the effect of the nonconservative-

ness loading parameter _ on the stability of laminated beams. Xiong and Wang

(1987) studied the stability of a Beck-type laminated column using an analytical

model, which is a column subject to a purely tangential load. Thus here we first

validate our finite element model by comparing our results to the analytical solution

of Xiong and Wang (1987).

The mechanical properties for the single-ply laminated beam as given by Xiong

and Wang (1987) are

E_x _ 3.4339623 Gxy 0.4462264 Gxz _ 0.4462264 Gyz -- 0.3707547
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with

Euy = 0.10388 x 109 Pa

and the geometric properties are

kg

p = 1860.0 m--y

-- = 0.25 -- = 10.0 bo
bo ho

= 0.02 m

and the ply angle/9 takes values of 0°, 15°, 30 °, 60 °, and 90 °.

v_u = 0.33

the total thickness of the beam.

Here ho represents

We considered the case when the beam is subject to a pure tangential follower

load (7) = 1). Figure 4.11 shows the fundamental characteristic curves for unidirec-

tional cantilevered laminated beams subjected to a tangential follower load. As in

the case of conservative loading, discussed in the previous section, plots show that

the ply orientations play a significant role in the stability of unidirectional laminated

beams. Results for the nonconservative case are in good agreement when compared

to those by Xiong and Wang (1987) and ABAQUS. Furthermore, the buckling and

vibration modes are shown in Fig. 4.14. As results show, the buckling and vibration

modes remain unchanged as we vary the ply angle. Thus, although the critical load

at flutter may vary with the ply orientation the mode shape remains unchanged.

Now we proceed to study the effect of subtangential loading on unidirectional

laminated beams (0 < 7) < 1). Figure 4.12 shows results for a nonconservativeness

loading parameter of 0.5 and Fig. 4.13 shows results for a nonconservativeness

loading parameter of 0.35. When r/= 0.5, the instability occurs by divergence for

any unidirectional laminated beam, as was the case for isotropic beams. It can

also be observed that the critical load due to flutter is lower when compared to

the purely nonconservative case (r/ = 1). As was the case of isotropic beams, for

values of r/< 0.5 instability is governed by divergence in the case of unidirectional

laminated beams.
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Since it was shown that warping is most important for unidirectional laminated

beams with a play angle of 30 °, we proceeded to compare the flutter mode shape

obtained with our laminated beam element and with that obtained using ABAQUS.

Figure 4.15 shows that only five laminated beam element are sufficient to capture

the same effect obtained by ABAQUS' shell element S4R (with 125 finite elements).

Results in Fig. 4.15(b) where obtained using MATHEMATICA.

4.4 Stability of Unsymmetrical Laminated Beams

We also studied the stability of several cases of unsymmetrical laminated beams.

The cases studied have a ply stacking sequence of [0°/0] where 0 takes values of 0°,

15 °, 30 °, 60 °, and 90 °. We considered four cases: (i) purely dead load (_7 = 0), (ii)

purely tangential follower load (U = 1), (iii) subtangential load with 77 = 0.5, (iv)

subtangential load with _? -- 0.35. For this analysis we used the properties as given

by Xiong and Wang (1987) and compared our results with those obtained using

ABAQUS.

We first studied unsymmetrical laminated beams with a purely conservative

loading. The results are shown in Fig. 4.16. Then we studied the case when the

loading is generally nonconservative. The results are shown in Figs. 4.17, 4.18, and

4.19. All results compare well with the ones obtained using ABAQUS. Results show

similar behavior when compared to those of the unidirectional case.
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4.5 Summary

In this chapter, w(' have stu(liecl the (let(q'miuisti(' stalfility aml vilmd, i(mal respotlsv

of isotropic and laminated beams. The ])resent twenty-ono _h,gl'ees of frt_th)m bun-

mated bemn elenmnt h,m been vali(late(l with tll()se available in the literatttr(,, l:()r

the case of stability amdysis, using the (lymuni(' (a'iteri(m, a very good agreemetlt

exists with tlw mmJytivM mM mmwrival anaJyses availal)lv h_ the liter;mn'e. Re-

sults have also shown the iml)ort, an(:(, of ply ori('ntathm and warping effects when

studying the stat)ility of lamimtte(l I_eams.

The anMysis 1)erformed m this chapter is ouly wdi(l fi)r (teternfinisti(: syst(,,ns.

However, in the presence of uncertainties a more z'ig()l(ms tn(%ho([ must be used. In

the next chapter, we dis(:uss the probability at)l)roach use(1 in this dissertation.
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Table 4.1: Dimensionless fundamental frequencies (&) for unidirectional laminated beams

with various boundary conditions (a = 0, implies warping is not included; c_ = 1, implies

warping is included)

o e/ho = 20 e/ho = 60
Maiti & Present Maiti & Present

Sinha (1994) a = 0 a = 1 Sinha (1994) c_ = 0 a = 1

Clamped-free

0 ° 12.6450

30 ° 5.3374

45 ° 4.1627

60 ° 3.6981

90 ° 3.5103

Clamped- Clamped

0 ° 70.9066

30 ° 34.0387

45 ° 26.5628

60 ° 23.3448

90 ° 21.9579

Simply-Supported

0 ° 35.2637

30 ° 16.4237

45 ° 12.1022

60 ° 10.4288

90 ° 9.8248

12.7908 12.7908

7.0673 5.2928

4.6571 4.1489

3.7705 3.6930

3.5068 3.5068

70.6606 70.6606

42.6153 33.2170

28.8494 25.9482

23.5125 23.0653

21.8625 21.8625

35.2325 35.2325

21.3061 19.8201

13.4558 13.1341

10.6078 10.5673

9.8159 9.8159

12.9940 12.9925 12.9940

5.3926 7.1125 5.3113

4.1815 4.6716 4.1592

3.7061 3.7793 3.7020

3.5154 3.5150 3.5150

81.5849 81.2112 81.2112

36.1359 44.9922 33.8174

27.6692 29.6489 26.4301

23.9469 24.0046 23.5178

22.4265 22.3255 22.3255

36.4265 36.3930 36.3930

18.4462 21.5981 19.9389

12.7466 13.5444 13.2020

10.5659 10.6602 10.6176

9.8735 9.8645 9.8645

E_z/Euu = 13.7088, Gxy/E_y -- 0.5471, G_z/Euv -- 0.269641, Gxz/Euu = 0.45679,

uxy = 0.30, ho/bo = 0.3175, E_ -- 9.42512 x 109 Pa, bo = 0.01 m, p = 1550.0666 kg/m _
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Table 4.2: Dimensionless fundamental frequencies (&) and dimensionless buckling loads

(,_) for symmetrically laminated beams with g/ho = 10 (a = 0, implies warping is not

included; a = 1, implies warping is included)

0 Reddy Present Reddy Present

(deg) (1997) (a= O) (a -- l) (1997) (a-.O)(c_--1)

Clamped-Free

0

9O

[0/90],

[45/- 45],

4.576 4.576 4.576

0.203 0.203 0.203

3.922 3.922 3.922

0.355 0.360 0.355

Clamped- Clamped

0

90

[0/90],

[45/-45],

27.656 27.686 27.686

2.747 2.755 2.755

20.800 20.819 20.819

4.802 4.870 4.815

Simply-Supported

0 13.768

90 0.784

[0/90], 11.179

[45/- 45], 1.369

13.770 13.770

0.784 0.784

11.181 11.181

1.441 1.437

4.528 4.560 4.560

1.004 1.002 1.002

4.132 4.178 4.178

1.326 1.333 1.332

17.212 17.215 17.215

5.761 5.764 5.764

14.837 14.839 14.839

7.616 7.666 7.623

11.635 11.636 11.636

2.771 2.771 2.771

10.488 10.488 10.488

3.663 3.758 3.752

Ex, IE,,_ = 25, O,_,IE_,,,= 0.5, O,,zlE_,_,= 0.2, O, zlE_ = 0.5, _,_ = 0.25, holbo = 0._,
Euu = 1.9584 x 10s psf, bo = 0.1 ft, p = 0.250387 slugs/ft 3,

(Eyy = 9.37687 x 109 Pa, bo = 0.03048 m, p = 129.0290 kg/m 3)
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Table 4.3: Dimensionless fundamental frequencies (&) and dimensionless buckling loads

(A) for symmetrically laminated beams with £/ho = 20 (a = 0, implies warping is not

included; c_ = 1, implies warping is included)

tO Reddy Present Reddy Present

(deg) (1997) (a=O) (a=l) (1997) (_=0) (a=l)

Clamped-Free

0

90

[O/90]s

[45/- 45].

4.987 4.987 4.987

0.205 0.205 0.205

4.362 4.362 4.362

0.358 0.364 0.358

4.930 4.931 4.931

1.012 1.012 1.012

4.594 4.597 4.597

1.338 1.348 1.334

Clamped-Clamped

0

90

[O/90]s

[45/- 45].

55.070

3.135

44.716

5.478

55.189

3.145

44.805

5.576

55.189

3.145

44.805

5.495

25.327 25.336 25.336

6.260 6.264 6.264

22.672 22.679 22.679

8.275 8.341 8.280

Simply-Supported

0

9O

[o/9o] 
[45/- 45].

18.304 18.307 18.307

0.812 0.813 0.813

15.689 15.692 15.692

1.419 1.496 1.492

13.430 13.431 13.431

2.829 2.829 2.829

12.434 12.435 12.435

3.739 3.840 3.834

Exx/Eyv = 25, Gz_/Eu_ = 0.5, Guz/Eu_ = 0.2, Gxz/Eyy = 0.5, u_y = 0.25, ho/bo = 0.5,
Eyy = 1.9584 × 108 psf, bo = 0.1 ft, p = 0.250387 slugs/ft 3,

(E_y = 9.37687 × 109 Pa, bo = 0.03048 m, p = 129.0290 kg/m 3)



4.5. SUMMARY 129

Table 4.4: Dimensionless fundamental frequencies (&) and dimensionless buckling loads
(_) for symmetrically laminated beams with _./ho = 100 (a = 0, implies warping is not

included; a = 1, implies warping is included)

Reddy Present Reddy Present

(deg) (1997) (a=O)(a=l) (1997)(a=0) (a=l)

Clamped-Free

0

9O

[0/90]_

[45/- 45] 

5.134 5.134 5.134

0.205 0.206 0.206

4.525 4.525 4.525

0.358 0.364 0.359

0

9O

[0/90],

[45/-45],

Clamped- Clamped

80.665

3.283

70.748

5.737

Simply-Supported

0 20.461

90 0.822

[0/90]_ 18.015

[45/- 45], 1.436

80.908 80.908

3.294 3.294

70.969 70.969

5.847 5.755

20.465 20.465

0.822 0.822

18.019 18.019

1.516 1.510

5.070 5.070 5.070

1.015 1.015 1.015

4.758 4.758 4.758

1.341 1.352 1.341

31.899 31.916 31.916

6.450 6.453 6.453

29.857 29.873 29.873

8.526 8.599 8.531

14.210 14.211 14.211

2.848 2.849 2.849

13.334 13.335 13.335

3.765 3.867 3.861

Ex_/Eyy = 25, Cx_/Ey_ = 0.5, Cyz/Ev_ = 0.2, axz/Eyy = 0.5, u_ = 0.25, ho/bo = 0.5,

Ev_ = 1.9584 x 10s psf, bo = 0.1 ft, p = 0.250387 slugs/ft a,

(Eyy = 9.37687 x 109 Pa, bo = 0.03048 m, p = 129.0290 kg/m 3)
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Table 4.5: Dimensionless fundamental frequencies (o3) for symmetrically laminated beams

with £/ho = 60 (a = 0, implies warping is not included; a = 1, implies warping is
included)

(deg) Sinha (1994) a = 0 c_ = 1

Clamped-free

[0/30/0]
[0/45/0]
[0/60/0]
[0/90/0]

12.862 12.869 12.858

12.794 12.796 12.792

12.770 12.769 12.769

12.778 12.778 12.778

Clamped- Clamped

[0/30/0]
[0/45/0]
[0/60/0]
[0/90/0]

80.753

80.282

80.065

80.047

80.418

79.923

79.703

79.692

80.354

79.902

79.703

79.692

Simply-Supported

[0/30/0]
[0/45/0]
[0/60/0]
[0/90/0]

36.075 36.051 36.045

35.869 35.840 35.839

35.792 35.760 35.760

35.813 35.780 35.780

E_z/ Euu = 13.7088, Gxu/ Euu = 0.5471, Gu_/ Euu = 0.269641, Gxz/ Euu = 0.45679,

uzy = 0.3, ho/bo = 0.3175, Euu = 9.42512 x 109 Pa, bo = 0.01 m, p = 1550.0666 kg/m 3
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Table 4.6: Dimensionless fundamental frequencies (&) for unsymmetrically laminated

beams with g/ho = 60 (a = 0, implies warping is not included; a = 1, implies warping is

included)
J

0 I Maiti & Present

(deg) I Sinha (1994) a = 0 a = 1

Clamped-free

[0/90/0/90] ]1 8.843 8.853 8.853

[0/30/- 30/0] ]1 12.397 12.403 12.403[0/45/-45/0] 12.268 12.270 12.270

Clamped- Clamped

[0/90/0/901] 56.000 55.753 55.753

[0/30/-30/01 [ 77.966 77.580 77.580[0/45/-45/01 77.086 76.703 76.703

Simply-Supported

[0/90/0/901
[0/30/- 30/0]
[0/45/-45/01

26.378 26.352 26.352

34.786 34.745 34.745

34.402 34.370 34.373

Ezz/Eyu = 13.7088, Gxy/Eyy = 0.5471, Gyz/E_ = 0.269641, azz/Eyy = 0.45679,

v_ = 0.3, ho/bo = 0.3175, E_ = 9.42512 x 109 Pa, bo = 0.01 m, p = 1550.0666 kg/m 3
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Table 4.7: Dimensionless buckling loads (A) for symmetrically laminated beams with

g/ho = 60 (a = 0, implies warping is not included; a = 1, implies warping is included)

0 Clamped-free Clamped-Clamped Simply-Supported

(deg) a=O a=l a=O a=l a=O a=l

Unidirectional

[o]
[30]
[45]
[60]
[9o]

33.756 33.756

10.026 5.633

4.339 3.454

2.850 2.736

2.467 2.467

525.58 525.58

158.96 90.343

69.254 55.222

45.566 43.750

39.450 39.540

134.22 134.22

47.158 39.989

18.573 17.648

11.514 11.424

9.8610 9.8610

Symmetric

[o/o/o]
[0/30/0]
[0/45/0]
[0/60/0]
[0/90/0]

33.756 33.756

33.120 33.063

32.744 32.726

32.607 32.607

32.652 32.652

525.58 525.88

515.33 515.33

509.05 508.79

506.44 506.44

506.60 506.60

134.22 134.22

131.71 131.67

130.16 130.15

129.59 129.59

129.74 129.74

E::x/Euy -- 13.7088, Gxu/Evu = 0.5471, Gyz/E_ = 0.269641, G_:z/Eyu = 0.45679,

uxv = 0.3, ho/bo = 0.3175, Eyu = 9.42512 x 109 Pa, bo = 0.01 m, p = 1550.0666 kg/m 3



Chapter 5

A Probabilistic Approach

In the past, the effects of uncertainties were recognized using traditional ap-

proaches. These approaches simplify the problem by considering the uncertain

parameters as deterministic and account for uncertainties using empirical safety

factors. However, the conventional methods of design and analysis are not appro-

priate for problems involving innovative design because the factors of safety are

based on experience and there is no experience available for these problems.

In fact, laminated composite structures have inherent uncertainties involved in

the manufacturing process, and the end product may have significant variations

in properties around the mean values. Thus the uncertainties in material and

geometric properties should be taken as random in the analysis. In this context,

the safety factors cannot be properly considered. Moreover, these safety factors do

not provide any information on how the different parameters influence the overall

behavior of the structure.

In the previous chapters we have presented a finite element formulation to study

the deterministic stability and vibrational response of laminated beams. However,

this formulation does not include uncertainties. Here we intend to expand the deter-

ministic formulation to account for uncertainties. Because probabilistic models can

capture the influence of these uncertainties, the chapter begins with a description

of the probability approach. Then we proceed to describe the random variables and

their characteristics in this work. The rest of the chapter is dedicated to explain

the three probabilistic theories developed here: probabilistic finite element method,

sensitivity-based Monte Carlo simulation, and Monte Carlo simulation.

133
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5.1 Uncertain Models

Uncertainties in laminated composites exist because of material defects such as

interlaminar voids, delamination, incorrect orientation, damaged fibers, and vari-

ation in thickness. According to the nature and extent of uncertainty existing in

laminated composites, different approaches can be used.

If the uncertainty is due to imprecise information and/or statistical data cannot

be obtained, then the non-probabilistic approaches such as fuzzy sets can be used.

These approaches have been studied by Elishakoff et al. (2001). On the other

hand, if the uncertain parameters are treated as random variables with known

(or assumed) probability distributions, then the theory of probability or random

processes can be used.

Probabilistic models can capture the influence of noncognitive sources of uncer-

tainty because they are based on probability principles rather than on experience.

These principles are mainly based on the following three axioms (Papoulis, 1991):

(i) the probability of any single event occurring is greater or equal to zero; (ii) the

probability of the universal set is one; (iii) the probability of the union of mutually

exclusive events is equal to the sum of the probabilities.

Several probabilistic methods have been used to analyze an uncertain unsym-

metrically laminated beam by integrating uncertain aspects into the finite element

modelling such as the perturbation technique using Taylor Series expansion and

simulation methods (e.g., the Monte Carlo Simulation).

Vinckenroy et al. (1995) presented a new technique to analyze these structures

by combining the stochastic analysis and the finite element method in structural

design. However they did not extend their work to dynamic problems. Stochastic

methods were also studied by Haldar and Mahadevan (2000a). They applied the

concepts to reliability analysis using the finite element method.
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The probabilistic methods, as used here, are an extension of stochastic methods.

The main difference is that stochastic finite element methods consider spatially

correlated random variables and in probabilistic methods these random variables

are not necessarily spatially correlated. Here we use the probabilistic finite element

method with uncorrelated random variables.

5.2 Random Variables

5.2.1 Definition

A random variable is defined as an uncertain parameter, for example, ply-angles,

ply-thickness, length of the beam, width, etc. In the present work, the random

variables are considered as independent and are denoted as

r = {rl,r_,...,r_) (5.1)

where ri's are the different random variables. In the present work, the random

variables for the laminated structures considered here are

1. each ply's orientation, _

2. each ply's axial Young's modulus, Exx_

Since these are independent random variables, the probability density function

can be expressed as follows:

72

I(_l,r2,... ,r_) = 1-I ]i(r) (5.2)
i=1
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The probability density function (PDF) does not provide information on the prob-

ability but only indicates the nature of the randomness. Among the used density

functions in the analysis of structures are the Beta distribution, Normal or Ganssian

distribution, Lognormal distribution, and Weibull distribution (Vinckenroy, 1994).

From these, the most commonly used distribution is Gaussian. Thus the present

analysis will assume that all random variables obey a normal distribution:

fi(r)- cri_/_ _ exp - (7i
(5.3)

2 and tq are the variance and the mean value of the ith random variable,where a_

respectively.

5.2.2 Function of Multiple Random Variables

In problems where uncertainties are considered, there exists no density function

describing the random nature of the system. The information is limited to only the

mean values of the random variables. In such cases, perturbation techniques are

suggested, among other existing techniques (Ang and Tang, 1975; Schu_ller, 1997).

In general the relationship between the random variables r_'s and the matrix Y

can be represented as a function of random variables,

Y = Y(rl, r2,..., r,) (5.4)

In most cases the sensitivity derivatives of matrix Y can be obtained. Therefore,

the matrix Y can be expanded using Taylor series expansion about the mean values

(Ang and Tang, 1984):

n n n

1

Y(rl,r_,...,r,,) = yO + 2y[e ' + -2 2 2Y[] _ +""
i=1 i=1 j=l

(5.5)
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z=x °' dOY I II _92Y ]
yO = y Y_ = _ ®=.°' Y'J = O_Orj .=.o

where :co = (#1,it2,... ,#n) is a set of mean random variables and ei = ri - #i is a

set of zero-mean uncorrelated random variables.

5.2.3 Random Number Generator

Most computers have the capability to generate uniformly distributed random num-

bers ui between 0 and 1. Afterwards random variables r_ are, in general, obtained

as

= s,(r,) = (5.6)

where si is a function of the random variable ri, and (I)-1 is the inverse of the

cumulative distribution function. However, when working with normal distributed

random variables, one faces the challenge of not having the inverse of the normal

distribution function in a simple closed-form expression (Law and Kelton, 2000).

Various random generators exist, among these those developed by Odeh and Evans

(1974) and Atkinson and Pearce (1976). In this dissertation, we use a slight mod-

ification of the Box Muller transformation (Press et al., 1986). Basically, we start

with two independent random numbers, ul and u2, which come from a uniform dis-

tribution (in the range from 0 to 1). Then we apply the Box Muller transformation

to get two independent random variables which have a Gaussian distribution with

zero mean and a standard deviation of one. Here we have used the modified version

of the transformation which can generate random variables for any given mean and

standard deviation. We have simplified the subroutine written in FORTRAN and

is given as follows:

SUBROUTINE randomvar (Nsamp, FirstSTD, Nmean, Randvar)

IMPLICIT none
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Parameters

DOUBLEPRECISIDN, PARAMETER:: zero=O.OD+O, one=l.OD+O

Used variables in this program

INTEGER, INTENT(IN) :: Nsamp

Random variables

DOUBLEPKECISION, INTENT(IN) :: FirstSTD, Nmean

DOUBLEPRECISION, INTENT(OLrr) :: Randvar(Nsamp)

DOUBLEPKECISION :: rand, xl,x2,ul,u2,Randvar2(Nsamp),pi

Counts random numbers

INTEGER :: ii, jj, kk

Holds the hour, minute, and second

INTEGER*4 timeArray (3)

pi = dacos(-one)

!!!!!)))!!!)!)!)))!)!!)!)!))!))!))))!))!!!))!)!!)))))))))

! Initializing the seed of the random number function !

! with the sum of the current hour, minute, and i

! second to get a different sequence each time )

! )

!)!!!!i!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

call itime(timeArray) ! Get the current time

ii = rand(timeArray(1)+timeArray(2)+timeArray(3) )

!!!!!!!)!!!!!!!!!!!!!!!!)!!!!!!!!!!!!!!!!!!!!!!!!!!!!)!!!

! )

! Calling rand(ii), the numbers are generated !

! between 0 and 1. )

! log(u) -> returns the natural logaxit_ of u i

!!!!!!!!!!!!!!!)!!!!!!!!!!!!!!!!!!!!!)!!!!!!!!!!!!!!!!)!!

Do kk=1,(Nsamp/2)

ul = rand(ii)

u2 = r_nd(ii)
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EndDo

xl = FirstSTD*dsqrt(-2.0DO*dlog(ul)

+ Nmean

x2 = FirstSTD*dsqrt ( -2.ODO*dlog(ul)

+ Nmean

Randvar( kk ) = xl

Randvar( (Nsamp/2)+ kk ) = x2

return

END SUBROUTINE randomvar

)*dcos(2.0DO*pi*u2)

)*dsin(2.0DO*pi*u2)

5.3 Monte Carlo Simulation

Monte Carlo Simulation, although computationally expensive, is a quite versatile

technique that is capable of handling situations where other methods fail. The

MCS is also often used to verify the results obtained from other methods.

Monte Carlo Simulation methods are based on the use of random variables and

probability statistics to investigate problems. Vinckenroy and de Wilde (1995)

developed an approach to account for uncertanties by combining the finite element

method and Monte Carlo techniques.

A large sample is generated and then using probability density functions (PDF)

one evaluates the probability of having such values. The larger the number of

simulations, the higher the confidence in the probability distribution of the obtained

results. Therefore, for the present analysis, at least ten thousand realizations of the

uncertain beam are performed, increasing the accuracy of the ply-angle and ply

axial modulus of elasticity distribution fit to the sample data.
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5.4 Probabilistic Finite Element Analysis

Let K be the probabilistic dimensionless linear stiffness matrix, M the probabilis-

tic dimensionless mass matrix, L the probabilistic dimensionless loading matrix, ,_k

the probabilistic dimensionless eigenfrequency of the k th mode, Pk the probabilistic

dimensionless buckling load of the k th mode, !bk the probabilistic dimensionless left

eigenvector of the k th mode, and _b_ the probabilistic dimensionless right eigenvec-

tor of the k th mode. Thus the probabilistic dimensionless eigenvalue problem is

expressed as

{_bk} T [g - Pk L - )_k M] = 0
(5.7)

[K - Pk L - £k M] {_bk} = 0

Note that the above quantities are all dimensionless.

In the stability and free vibration analysis of the present problem, the random

nature of the stiffness matrix, mass matrix, loading matrix, buckling loads, eigenfre-

quencies, and eigenvectors are studied using a Taylor series expansion up to second

order about the mean of each random variable. In contrast to the work done by Oh

and Librescu (1997), the present formulation can use results provided by commer-

cial finite element codes, greatly reducing the number of calculations. The present

formulation also calculates the eigenfrequency sensitivities up to second-order ap-

proximation. Moreover, the method is extended for nonconservative systems and

for the analysis of stability of laminated composites using the dynamic criterion.

The presence of structural uncertainties results in a certain randomness in the

extensional matrix A, extensional-bending coupling matrix B, and bending matrix

D. The coefficients of these matrices are present in the equivalent bending stiffness

matrix De, Eq. (2.37). Thus the matrix Dc will have certain randomness associated

as well and, by virtue of Eq. (3.38), these uncertainties affect the stiffness matrix.

Thus, the random nature of the stiffness matrix K is expanded in terms of the

mean-centered zeroth-, first-, and second-order rates of change with respect to the
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random variables, as presented in Eq. (5.5),

K(rl,r2,...,r,_) = K ° + Kriei + -_
i---1 i=l j-=l

(5.8)

Similarly, the random natures of the mass matrix M and the loading matrix L are

expanded in terms of their mean-centered zeroth-, first-, and second-order rates of

change with respect to the random variables as

I _-_ _-_ MlJe,Ej (5.9)= M ° + _ M_ei +
i=l i=1 j=l

1 _-_ Lgeiej (5.10)= L ° + L_e_ +
i_l i=l j----1

The buckling loads, eigenfrequencies, and left and right eigenvectors are also af-

fected by uncertainties. The eigenfrequeneies and eigenvectors are expressed in

terms of their mean-centered zeroth-, first-, and second-order rates of change with

respect to the random variables. Further, let the first-order rate of change of the

k th mode right eigenvector with respect to the ith random variable evaluated about

the mean be

o{ k}
,_=.o = {_b_,} (5.11)

and the second order rate of change of the k th mode right eigenvector with respect

to the ith and jth random variables evaluated about the mean be

0 {Vk}.--.° IIOx, Oxj = {¢ki3} (5.12)

Using the same notation for the eigenfrequencies and buckling loads, we can express

the following:



5.4. PROBABILISTIC FINITE ELEMENT ANALYSIS 142

Eigenfrequencies

1 n II

i----1 i=1 j--.---1

(5.13)

Right Eigenvectors

n 12

{_)k(?-l,r2,...,rn)} ---- {_bk 0} -[- E{f_ki}_i-q- -_

i=1 i=] j=l

Buckling Loads

(5.14)

1 n n lIPk(rl,r2,...,rn) = pO + P_ie' + 5_EPkiJ _'ej
i=1 i=1 j=l

(5.15)

The substitution of Eqs. (5.8), (5.9), (5.10), (5.13), (5.15), and (5.14) into

Eq. (5.7), results in a probabilistic eigenvalue problem. Since the uncertainties

in the random variables are assumed small, in the applied perturbation technique

it is sufficient to only consider up to second-order terms. Thus the expansion of the

probabilistic eigenvalue problem leads to three equations which are solved succes-

sively:

Go: [K o_/:_kL o_ A_M o] {¢o} = 0 (5.18)

e': [K_ - PZkiL° - ,k_iM °] {4) ° } = 0 (5.17)

,2: [K,'J 0,, To ,, o--_kq_, -AkqM ]{_ b°}=

- [K_- P_,L °- ,k_,M °] {4)_}

Details are included in Appendix E.

(5.18)
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5.4.1 Eigenfrequency Derivatives

Equating the zeroth order terms of ei in the eigenvalue expansion, an eigenvalue

problem for the mean-valued system is obtained. Therefore, the mean-centered ze-

roth derivative eigenfrequencies and associated eigenvectors are obtained as follows:

{¢0}T [K o _ polo _ )_OMO ] = 0
(5.19)

[Ko_ FOr0_  OM0] {0o}= 0

Recall that the loading and mass matrices do not depend on the lamina's mechan-

ical characteristics. Since the lamina ply angles and axial Young's modulus are the

only random variables considered, the sensitivity derivatives of the mass and load-

ing matrix vanish. Thus expressions for the mean-centered first and second-order

derivatives of the eigenfrequencies are found as

A_, = {¢O}T [K_- P_,L °] {_}
{¢O}T [M o] {¢_} (5.20)

pII To]
k_j_ J

A_,I = {¢_}T [K1] _ {_o}
{¢_}T [M o] {_bo} (5.21)

{_O}T [Kff - P_,n ° - A_,M °] {_j}

+ {,#0}T [M o] {¢o}

{¢O}T [K_- P_¢L °- A_jM °] {¢_,}

+ {¢0}T [M o] {¢o}

For conservative systems,

L = L T and {¢_} = {¢o}

Thus for conservative systems, and by virtue of Eq. (5.17), the expression for the

second-order derivative simplifies to the expression derived by Kapania and Goyal
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(2002) for conservative systems:

PkoL ]{¢0}
A/k_1J= {¢0}T [g_I_ H 0

{_b°} T [M °] {_b°}
(5.22)

The advantage of this method is that the eigenvalue problem needs to be solved

only once. The sensitivity analysis is done by using results from the mean-valued

eigenvalue problem. This results in great computational saving.

5.4.2 Eigenvector Derivatives

Although in this dissertation we have not studied the derivatives of eigenvectors,

the method on how to determine these derivatives is described in Appendix E, and

in this chapter we only highlight the final derivation. Recall that to normalize

the left and right eigenvectors we used two independent criteria. Since the right

eigenvectors form a complete set of vectors, an eigenvector can be represented by

a linear combination of all other eigenvectors:

n

{C/k,} = E a(k_ {¢j} (5.23)
j=l

where

0 j=k

{_bj} T [K[- P/k, L] {_k}
j#k

Ak - A_

(5.24)
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5.4.3 Stiffness Matrix Derivatives

Hasselman and Hart (1972) proposed a method to calculate derivatives of eigen-

frequencies for reduced systems. However, they assumed that the contribution of

the partial derivatives of the transformation matrix to the partial derivatives of the

eigenfrequencies and eigenvectors is small.

In calculating derivatives of eigenfrequencies, only derivatives of the stiffness and

mass matrices are needed. The derivatives of the stiffness matrix are more involved

because they require taking the derivatives of the equivalent bending-stiffness ma-

trix, Eq. (2.37). Various numerical schemes, such as the finite difference method,

exist to evaluate these derivatives. When using some of these numerical schemes,

ill-conditioning could be a problem. This problem can be avoided by the follow-

ing formulation which allows the derivatives to be obtained exactly by numerical

multiplication. The technique consists of taking the derivatives of Eq. (2.36) with

respect to each of the variables xi:

[Dn],¢, = [D1a],r, - [DI,H]#, [Dzi,II1-1 [DHa]

-[01,ii] [OII,I1].-r_ [OH,I] - [D1,1I] [DII,II] -1 [DlI,I],r,

(5.25)

[DR].,,., = [D1a],,.,,.j - [DI,II],,.,,., [DII,H] -z [D11a] (5.26)

-[D,,H]#, [DH,._I],-_ [DH,,] - [D,,II],,., [DH,H]-' [DII,Z]#,

-[D!,_1,1#, [Du,n]7 [DI*,,1 - [D,,H] , [D,,a]

-[D,,,,] [DH,H]7.[ [DH,,],_, -- [D.T,H]., [D.,.]-* [Dz,,,1,,.,

-[D,,,,1 - [D,,,,][D,,,.]-* [D,,,,]

The derivatives of [DII,II] -1 are calculated using the following matrix definition:

[DII,II] -z [DII,II] = [I] (5.27)
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and these derivatives are

[DII,II],-r_ = -[DII,II] -1 [DH,H],,,, [DII,II] -1

D -1 -1 --1[ ll,ll],rir_ =" --[DIl,II],r_ [Dll,lI],r, [DII,II]

-[n11,n] -1 [DH,II],,, [nn,il],:_

- [DII,II] -1 [DII,II]x,,.j [DII,II] -1

(5.28)

(5.29)

5.5 Statistical Quantities

The mean value of the eigenfrequency is obtained by taking the expected value of

Eq. (5.13):
n n

1 ii E[_i_j].. (5.30)
i=l j=l

The variance and the standard deviation are defined as

Var[Ak] = E[A 2] - #2 (5.31)

a_ = _'Var[Ak] (5.32)

The uncertainty associated with the inherent randomness is given by the coefficient

of variation (Ang and Tang, 1975)

6_ = a_,l#), (5.33)

For symmetrically distributed independent random variables,

Var[Ak] = Af, Af, Eic_] + _- Aki, Akjj { E[e, ej] -
i=l i=I j=l

(5.34)
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where

El4] =
q----1

Nlam

2 2
E[qc_] = Z

q=l

N._.

E[e_lE[e_] = Z
q----1

and N_m is the number of samples.

(rq -

Nsam

N_m [ (rq -- #i)(rr -- _J) IZNsam

r----1

5.6 Summary

The sources of uncertainties used throughout this work are those for which un-

certain parameters can be treated as random variables with known (or assumed)

probability distributions. Here we assume all random variables to be independent

and spatially uncorrelated. In this chapter, we develop the probabilistic finite ele-

ment model, which is based on the deterministic response. The eigenvalue problem

has to be solved only once, this being a great computational advantage. Sensitivity

derivatives for conservative and nonconservative systems axe presented as follows:

X_, = {_b°} T [K_ - P_,L °] {4) ° } (5.35)

,k_i_ = {¢_}T [KIJ _ --k_J_'°''r0qj {_bo}

+ {¢0}T [K_ - P_,L °- ,k_iM °] {qb_/}

+ {¢0}T [K_- P_jL °- ,k_jM °] {q_,}

(5.36)

In the next chapter we perform the analysis of uncertain laminated beams.



Chapter 6

Reliability Analysis of Laminated

Beams

The analysis in Chapter 4 is only valid for perfect structures, those structures

without imperfections. However, uncertainties in ply angles and the axial modulus

of elasticity lead to imperfections in the structure and the deterministic analysis

may be no longer valid. Thus here we use the methods described in the Chapter 5

to perform a more accurate analysis. The analysis of uncertain laminated beams is

performed to two types of problems: free vibration analysis and stability analysis

using the dynamic criterion.

6.1 Probabilistic Analysis

In a problem involving uncertainty, one first conducts statistical analysis on the

random variables. This can be obtained experimentally or using sampling tech-

niques. Then using this information one calculates the influence of the randomness

of the random variables on the wanted response.

In the present analysis, we used ten thousand data points and the results are

presented in frequency density diagrams or histograms, which show the distribu-

tion of the eigenfrequencies or buckling loads. The number of cells needed in the

frequency density diagram is given by Sturges' formula as (Law and Kelton, 2000):

148
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kfd _ 1 + 3.3 lOgl0(Nsamp) (6.1)

where /samp is the number of data points. For Ns_mp = 10,000, the approximate

number of cells is 14.2. However, we have chosen to use kfd ----16 in this work. Once

we have the histograms, we pick a density function that best fits the response.

This probabilistic density function can be used to perform the reliability analysis

of uncertain structures.

6.1.1 Random Variables

In the present study, it is assumed that the beam is composed of identical plies that

possess the same geometric and mechanical properties. It is further assumed that

the randomness of each ply angle and modulus of elasticity in the x-direction, J_,,

is the same for every ply and are spatially uncorrelated. Let _i and /_x. be the

deterministic quantities of the ith lamina. If the probability distribution function

for the ply angles and the axial modulus of elasticity are re(r) and fE(r), then the

randomness can be expressed as

where i is represents the ith ply, and 0_ and Er represent the random variables

expressing the uncertainty in _ and/_x_,, respectively.

In general, the ply-angle uncertainties are between =i=2.5°. Thus for the present

study we have assumed for t_ a Gaussian distribution with a standard deviation

of 2.5 °. Thus there is a 95.3% probability that the ply orientation will have an
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Figure 6.1: Probability density function for the full generation of pos.sil)le variation ,ff the

ply angle, 0, with a standard deviation of a0 = 2.5 ° and zero mean.

uncertainty between -5 ° and 5°:

5" 1 I
P(-5 ° < r< 5° ) = (6.2)

The probability density fuil(:ti()n is shown in Fig. 6.1.

The randomness in the material properties, with a 95% cotlfi(lence interval, have

an experimental coefficient of variation of 3% (Lin and Kam, 200(I). However, in

the present work we have assumed a coefficient of variation of 5%. Thus there is

a 95% probability that the ply orientation will have an uncertainty between -0.1



6.1. PROBABILISTIC ANALYSIS 151

8.00

7.00

e_
O 6.00

¢,a
ee

5.00

4.00
"0

m

•_ _.oo
,f=
o

_, 2.00

1.00

Deterministic:

n ,_ = 1.00

Probabilistic:

MEAN - 0.00

STD = 0.05

I

I Generated random variable [

INormal Distribution

0.00
-0.19 -0.16 -0.13 -0.11 -0.00 -O.OJ -0.03 0.00 0.03 0.0J 0.00 0.11 0.13

Dimensionless Axial Modulus of Elasticity, n _,

Figure 6.2: Prob_bility density function for the full generation of possible wtriation of tilt,

dimensionless axial modulus of elasticity for isotropic beams, i_ -- 1, with a dimension-

less standard deviation of aE = 0.05 and zero mean.
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and 0.1:

f_01P(-0.1 < r < 0.1) = 1
0.i aE----_ e dr = 0.953

(6.3)

The probability density function for the various cases studied in this dissertation

are shown by Figs. 6.2 and 6.3. Note that because we have nondimensionalized all

quantities in the finite element formulation, we take the variation of the nondimen-

sional axial modulus of elasticity:

E_g

6.1.2 Probabilistic Models

For the uncertain analysis of laminated beams three models are developed: Ex-

act Monte Carlo Simulation (EMCS), Sensitivity-Based Monte Carlo Simulation

(SBMCS), and Probabilistic Finite Element Analysis (PFEA). The analysis can be

described as follows:

. In the EMCS we solve the eigenvalue problem for each realization to determine

the natural frequencies and buckling loads. The mean value and the standard

deviation are obtained using statistical methods.

. In the SBMCS, we only solve the eigenvalue problem for the mean values of

the random variables. Then using this information, we calculate the sensi-

tivity derivatives, leading to an approximate function describing the random

nature of the eigenfrequencies and buckling loads. Now we calculate the

eigenfrequency and buckling load for each realization. The mean value and

the standard deviation are obtained using statistical methods.

3. The PFEA uses the sensitivity derivatives and gives the mean and standard

deviation directly.
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6.1.3 Finite Element Analysis

For all three methods above described we used the finite element method with

five finite elements. The three sets of boundary conditions used are the same as

those mentioned in Chapter 4: hinged-hinged, clamped-free, and clamped-clamped.

Moreover, recall that all the analysis was performed using the dimensionless finite

element method, and the response is in nondimensional form. When studying the

effect of uncertainties of random variables on the fundamental natural frequencies,

it is convenient to study their squared value, i.e., eigenfrequencies, which are given

in their nondimensional form as

A,=An Iot _ )_=An 1210_ (6.4)
Euuboh3o Euuboh3o

The critical loads are given as

/?2 12/?2
(6.5)

-f=',_= Pn Euuboh 3Pn = Pn Euuboh3o

6.2 Free Vibrations

We first study the influence of having an uncertain dimensionless Young's modulus,

nxx, on the free vibrations of isotropic beams. Next, we study how the free vibration

response of various laminated beams are affected by uncertainties in nxx. Also, we

studied the cases for ply-angle variations.
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For the case of free vibrations the sensitivity derivatives of the natural eigenfre-

quencies simplify to:

(6.6)

= {,o}T[K,'J] (6.7)

6.2.1 Isotropic Beams: Uncertain Young's modulus

The probability distribution functions of the fundamental dimensionless eigenfre-

quencies, A, are shown in Figs. 6.4, 6.5, and 6.6. Results show that by randomly

generating possible values for the Young's modulus in the x-direction with a coeffi-

cient of variation of 5%, the fundamental dimensionless eigenfrequencies also have a

coefficient of variation of 5%. The figures show that a symmetric randomness in the

random variables produces symmetric variation in the dimensionless fundamental

natural frequency. Also, the Sensitivity-Based Monte Carlo Simulation (SBMCS)

when using only one thousand samples are in perfect agreement to those by the

Exact Monte Carlo Simulation method (EMCS) using ten thousand samples.

It seems that the variation in E_x is most critical for a fixed-fixed isotropic

beam. This could be because the boundary conditions make the beam stiffer and

thus increases the fundamental frequency. Although the coefficient of variation is

only of 5%, it significantly affects the fundamental frequency because of the high

frequencies.

For the case of Sensitivity-based Monte Carlo Simulation, we also studied the

influence of the zeroth, first, and second order variation on the dimensionless natural
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eigenfrequencies, where these orders are understood as follows:

" 1 _2_ _-_ H (6.8)

i=l i=I j=l
zeroth order _ • -,_ .,

first order second order

Figures 6.7, 6.8, and 6.9 show that the second order terms have no significant

influence on the overall dimensionless fundamental eigenfrequency.

6.2.2 Laminated Beams: Uncertain Young's modulus

Results for a unidirectional laminated beam with a ply angle of 0 ° are plotted in

Figs. 6.10 and 6.11. Similar trends to those of the isotropic case can be observed.

However, for a 90 ° unidirectional laminated beam, Figure 6.12 shows that the

Young's modulus in the x-direction has very little effect on the free vibrational

response. The reason for this could be that the laminate in stiffer in the x-direction,

thus small variations in Ex_ do not influence the beam's fundamental frequency.

Results for other boundary conditions were consistent with those of the cantilevered

case.

We also studied several laminated composites such as sandwiched laminas with

a layout of [0°/0/0/0°], for all 0 = 30 °, 90 °. Figures 6.13-6.18 show these results.

For all three boundary conditions it can be seen that the variation in the dimen-

sionless fundamental frequency is the smallest for 0 = 90 °. Once again a very good

agreement holds for all three methods employed in this study.



6.2. FREE VIBRATIONS 157

@.09

O.OH

"_ 0.07

el

0.06

gl
t_ 0.05

"o

:-3 0.o4
,.a
g
,.a

0.03

0.02

0.01

0.00

m Monte Carlo Simulation 1

--*- Normal Distribution_

75.4 7"/.q HO._ H3.0 Ss..q SILl 90.6 93.2 9.q.'/ qtl.,I IO0.B I03.3 10_.9 10N,4 I[I,0 IIJ.5 116.1

Dimensionless Etgenfrequency

(a) Monte Carlo Sinlulali_m

O.Oq

O.OO

O.O7
O
o._

0.06

•_ 0.05

,_. 0.04

"_ 0.03
e_

eL 0.02

0,01

0.00 • :

7£00 120.00

Deterministic: _ ] -- Monte Carlo Simulation

9"7.40 / _ i "-*- Scn,,tittvity-Ba.scd M('S

Probabilimtic / \ i -- Pmbabilistic FEA

c ov_0.0500 / \
MEaNo0723 / ._

• 2, _ 2

_Ge sxoo _aoo .J.oo _oaoo io_.oo H0.oo _1_.oo

Dimensionless EIgenfrequency

(b) All three methods used twre

Figure 6.4: Probability density function of the dixnensionless eigenfrequency, A, for a

simply-supported isotmpi¢ beam with uncertain Young's modulus fix the x-direction.



6._. FREE VIBRA TIONS 1,58

g_
o

g

m

i

n.

0.'/0

0.60

o_qo

0.40

0.30

0.20

0.10

0.00

C.O.V. - 0.050

MEAN - 12.45

STD - 0.6231

1 Monte Carlo Simulation ]

i-4- Normal Diltribution ]

q.7 I0.0 IO~l 10.6 I1.0 IIJ 11.6 11.9 11.3 1|.6 12.q 13.2 LI.6 13.q 14.2 14.5 14.q

Dimensionless Eigenfrequency

(a) Monte Carh_ Simulati, m

O. 70

0.60

o

O.30

,_ 0.40

,_ 0.10

I

O 0.20

O.IO

O.O0

9._0

Determlnhtlc: _ I -- Monte Carlo Simulalion
12 36 " _

I

g/ _ I Sensitivity-Based MCS

Probahillstic: / _ _ Probabilisd¢ I"F.A

c.o.v. - o.o5o / \

lass trio 12.so H._o i_o

Dimensionless Eigenfrequency

(b) All three methods used here

Figure 6.5: Probability density function of the dimensionless eigenfrequency, A, for a

cantilevered isotropic beam with uncertain Young's modulus in the x-direction.



6.2. FREE VIBRA TIONS 159

o

m

"o

1.
a
P,

0.02

0.02

0.01

O.OI

0.01

0.0!

O.Oi

0.00

0.00

0.00

C.O.V, - 0.050

MEAN - 503.2

STD - 25.14

I I Monte Czirlo simul|tlon I

["*- Normal Distribution J

90.2 40.1.1 410.5 429.6 442.8 455.9 469,1 481.1 495.4 50L_ 521.? 5M.N ._,41L0.461.1 574J _7.4 eO0.b

Dimensionless Figen frequency

(a) Monte Carh, Simulati(m

0.02

0.02

0.01
o

gg 0.01

'_g" 0.01
m

"o

,_
0.01

eL 0.00

0.00

0,00

375.00

Determiniltic:

500.56

Probabtlistic:
d

C.O,V. = 0.050 /
/

MEAN = 503.2 /
/

STD = 25.14

42_00 47£00

|
-- Montc Carlo Simulatmn I

I//_ -4- Scnsitivily-Ba,_d MCS
Probabilistic F'FA

Dimensionless Eigenfrequency

(b) All three methods used here

Figure 6.6: Probability density function of the diinensionless eigenfrequency, A, for a

fixed-fixed isotropie beam with uncertain Young's modulus in the x-direction.



6.2. FREE VIBRATIONS 160

120.00

!00.00

e_ 80.00

& 60.00

o_

_.1 40.00

ft_

O 20.00

0.00

-20.00

-40.OO

Zeroth Order Variation

...... First Order Variation

Second Order Variation

0 !00 200 JO0 400 500 600 700 800 900 I000

Sampling Number

Figure 6.7: Effect of the order of the sensitivity deriwtt.iw_s on the dimensionless eigenfre-

quency, A, fl_r a simply-supported isotropic beam with uncertain Young's moduh_._ in the

x-direction.



6.2. FREE VIBRATIONb' 161

14.00

¢o

!

m

e_
.o
gl

12.00

!0.00

_.00

&O0

4.OO

2.00

0.00

-ZOO

,4.OO

Zeroth Order Variation

...... First Order Variation

Second Order Variation

0 I00 200 300 400 _00 600 700 800 900 I000

Sampling Number

Figure 6.8: Effect of the order of the sensitivity derivatives on the dimensionles,_ eigen-

frequency, _, for a cantilevered isotropic beam with uncertain Young's modulus in the

x-direction.



6.2. FREE VIBRATIONS 162

600.00

II

O"
o_

gl

g=
.2

300.00

40_00

30_00

20_00

!0_00

0.00

-i0_00

Zeroth Order Variation

...... First Order VariationSecond Order Variation

-20_00 .......

o too _oo Joo 400 _oo _oo zoo soo _oo tooo

SampllngNumber

Figure 6.9: Effect of the order of the sensitivity derivatives (m the dimensionless eigen-
frequency, A, for a fixed-fixed isotropic beam with uncertain Yotmg's modulus in the
x-direction.



6.2. FREE VIBRATIONS 163

|
,Z

G3

".4
m
e,,

0.06

0.05

0.04

0.03

0.01

Probabll|sflc:

C.O.V. - 0.0502

MEAN- 168.97

,VI'D - 8.40

!..Moo,,cai,os,-,,iooI
["_- Normal I)JstHbulion I

Dimensionless Eigenfrequency

(a) Monte Carlo Sintulati-tt

a
i
S

!
tL

0.0._

O.O5

O.04

0.04

0.03

O.03

0.O2

O.02

O,OI

O.OI

0.00

Deterministic: //4_ i -- Montc Carlo Simulation i
169.00 / "_ i +Scns"ivity'"ascd M('S I

rrobmbillstic' / \ i _ Pr_babilisti¢ F'EA

(:or - o.oso2 / _,
MEAN-,°807 1 \

145.00 1_5._0 16S.0_ 175.00 IJI5.00 I�S.OO 20_LOO

Dimensionless Eigenfrequency

(b) All three methods used here

Figure 6.10: Probability density function of the dimensionless eigcnfrequency, _, for a

cantilevered unidirectional laminated beam (0 °) with uncertain Young's modulus in the

x-direction.



6.2. FREE VIBRATIONS 164

20&O0

15_00

01

&
I00.00

°_

_ 5&oo
0

_1 _oo

-50.00

Zeroth Order Variation

...... First Order Variation

Second Order Variation

0 I00 200 300 400 500 600 700 &O0 900 IO00

Sampling Number

Figure 6.11: Effect, of the order of the sensitivity derivatives (m the dimensionless eigenfrc-

quency, A, for a cantilevered unidirectional htnfinate(l I)(;am (0 °) with uncert_tin Y[)ung's

modulus in the x-direction.



6.2. FREE VIBRATIONS 165

120.00

I I00.00
0

_' 80.11tl

"_ 60.00

N
AD 40.00

eL

20.00

Probablllttic:

C.O.V. = 0.0003

MEAN _ 12.361

STD = 0.004

jam Monte Carlo Simulation i

j"*-" Normal Distribution ]

0.00

Dimensionless Eigenfrequency

(a) Mollte Carlo SilllUlation

120.00

100.00

"i 80.00

"_ 60.00

40.00

20. O0

0.00

IZJ40

-- Monlc Carlo Simulation ]
t

Deterministic: -'¢- Scnsittvtty-Hascd M(.'S ]

12.30 ff-_! _ Probabilistic FEA ]

Probablllstlc: d/ \

c.o.v. - o.ooo_ / \

tzJ_ iz_se iz:u5 iz:t_ J2.:t6_ tzJTo tz_7_ iz3so

Dimensionless Eigenfrequency

(b) All three Inethods used here

Figure 6.12: Probability density function of the dimensionless eigcnfrcquency, _, for a

cantilevered unidirectional laminated beam (90 °) with uncertain Young's moduhLs in the

x-direction.



6.2. FREE VIBRATIONS 166

0

|

]
el
en

eL

1.40E-03

1.20E-03

1,00E-03

0.00E-04

6o00E-04

4.f10E-04

2.00E-04

0,00E*O0

Probllbili|tic:

C,O.V. - 0.050

MEAN - 6315.?

STI) - 309.47

] I Monle Carlo Simulation

[--,_ Normal Distribution

4r¢22 .(oK4 _24b 54ol] 5570 _7._,J _93 bOSS 6,]J7 63"/9 b_41 6702 (_b4 70_ ?|M ?.tSo 751!

Dimensionless Eigenfrequency

(a) M(ml, e Carlo SimulatiolJ

O

l

.=

ell

[
e_

1.4E-03

1.2E-03

I.OE-03

&OE-04

6.0E-04

4.0E-04

2.0E-04

O.OE+O0 ,

47J0.0

-- Monte Carlo Simulation

Deterministic: f_'_ -o- Scnsitivity-llascd M('S

6327.16 / _ -- Probabiltsti¢ I"EA

Probubllistic: / \

(:.o.v.=0.020 / \
MEAN-_IS.7 / \

srD

_zs0.0 _7_a0 62_0.0 67s_o 7_s_o ??J_o

Dimensionless Elgenfrequency

(b) All three metho(i,_ used here

Figure 6.13: Probability density flmction of the dimensionless eigenfrequency, ._, for a

fixed-fixed laminated beam ([0°/30°/30°/0°]) with uncertain Young's modulus in the ,r-

direction.



6.2. FREE VIBRATIONS 167

II
0
"11

III

I

..
A1

1.60E-03

1.40E-03

1.20E-03

1,00E-03

8.006-04

6.00E-04

4.00E-04

L00E-04

O.OOE _'(H)

Probabilimtic:

{'.O.V. - 0.049

MEAN - 6062,10

STI) - 296.6"/

mB Monte Carlo Simulation

L---_ Normal Distribution

472"/ 4L_NI 5037 5i_2 S.T47 5.40] _57 .1.al2 5966 6113 627Pl 64JJ 6_ 6"/4.] e,d_g "/05] 72M

Dimensionless Elgenfrequcncy

(a) Monl,,_ Carl. Simulat ioa

O

11

i

A_

A1
o

£

1.6E-03

1.4E-03

1,2E-03

I. OE-03

&OE-O4

6. OE-04

4.0E-04

2. OE-O4

O.OE+O0

4750.0

|

-- Monte Carlo Simulation [

IDeterministic: I _ Sen,,iilivily-|_a.'ied ML'S

6073.016 _[ _ Probabilistic FF.A

Probablllstlc: 1 _,

c ov - 0.04, / \
M>:'7:7"'.'° / \

STD

J2J&O J7JO.O 62J0.0 67JO, O ?250.0

Dimensionless Eigenfrequency

(b) All three nlethotl,_ llst,(t here

Figure 6.14: Probability density function of the dimensionless eigenfrcquency, _, for a

fixed-fixed laminated beam ([0°/90°/90°/0°]) with uncertain Young's modulus in the x-

direction.



6.2. FREE VIBRATIONS 16,_

b.OOE-O2

[] 5.00E-02
O

m

4.00E-02

II

_. 3.O0E-O2

A_

i /.00E-02

e-

I.OOE-02

0.00 E +O0

Probablllstlc:

C.O.V. - 0.049

MEAN - 157.92

STD - 7.84

(a) Nhml,*, (',ari,, Silltulati(m

&OE-02

J.OE-02

0

4.0E-02

II
_ 1.0£'-01

¢1 2.0E-02

8-

I.OE-02

0.0£+00

125.0

I

-- Monte C'arlo Simulalic, n I

Deterministic: "4- .",;cnsittvtty- |'lascd M('S I158.20

/ _ _ Probabihsl]¢ F!'A . •

Problbililtlc: _ \

c.o.v.- o.o49 / \
MEAN - 157.92 / \

135.0 14J.O IJ5.O 165.0 I _J.O 155.0 195.0

Dimensionless Elgenfrequency

(b) All three methods used here

Figure 6.15: Probability density function of the dimensionless eigenfrequency, A for a

cantilevered laminated beam ([0°/30°/30°/0°]) with imeertain Young's modulus in the
x-direction.



6.2. FREE VIBRATIONS 169

m
t_

ts

$

a_

6.00E-02

5.0_E.-02

4.00E-02

3.00E-02

Z.00E4}2

1,00E-O2

Probsbilist|c:

C.O.V. - 0.050

MEAN - 157.92

STD - "/.44

Mont(' Carlo Simulation j
l

"4- Normal Distribution l!

O,OOE+O0

116 I]0 124 lib 1.12 1.16 140 144 148 151 155 15¢_ I_A 16"_ 171 175 iTQ

Dimensionless Eigenfrequency

(a) Monte Carlo Sinmlaticm

&OE-02

£0E-02

gl
o

gg 4.0E-02

.s

.j
¢_ 3.0E-02

1 2.0E-02
A_

e_

I.OE-02

O.OE+O0

120.0

i

-- Monte Carlo .'qimulation I
i

Determlniillc: _'_ "-_ Scnsitivity-Ba._.ed MCS I
150.1503 / _ -- t'rohabtl,s,ic FEA I

Probsblllltlc: / \

c.o.v _ o.o4, / *,
M_:AN : 149.88 }_ \

130.0 140,0 I$0.0 laO, O II0,0 lllO, O

Dimensionless Eigenfrequency

(b) All three method,_ used here

Figure 6.16: Probability density function of the dimensionless eigenfrequcncy A, for a

cantilevered laminated beam ([0°/90°/90°/0°]) with uncert_dn Young's modulus in the

x-direction.



6.2. FREE VIBRATIONS 170

m
o

'U
R

A_

.g

8.00E-.03

7.00E-03

6.00E-03

5.00E-03

4.00E-03

3.(NE-O3

2.00E-O3

1.00E-03

0.00E+00

Probahllislic:

('.O.V. - 0.049

MEAN - 1242.56

STD - $1,bl

!IBll Nlonle Carlo Simulation
i

i -"- Normal Distribution

Dimensionless Eigenfrequenc)

(a) M(mte ('arlo ,Silnulation

7.0E-03

&OE-03

"_ 5.0E-03

P-' 4.oE.oJ
m
e_
_a

_,, s.oe-os
N

_ 2.0E-03

I.OE-03

O.OE+O0

90O.0

-- Monte Carlo Simulation I

IDeterministic: _ -4- Scnsitivily-ff, ascd Mt'S

1244.80 / W I _ _ I'robabllislic FI'A

Probmblllstl¢: /

c.o.d. - 0.049 l "_

r \

Iooo.o IlO0.O I,TO0,O I._oeo t4oo.o Isoo.o 16o_o

Dimensionless Eigenfrequeney

(b) All threemethods used here

Figure 6.17: Probability density function of the dimensionless eigenfrequency A, for a

simply-supported laminated beam ([0°/30°/30°/0°]) with uncertain Young's modulus in

the x-direction.



6.2. FREE VIBRATIONS 171

o

I
.$

+:
eL-

8.0OE-03

7.00E-03

6.00E-03

5.00E-03

4.00E-03

3.00E-03

2.00E-03

I.OOE-03

O.OOE+o0

Probablllstlc:

C'.O.V. - 0.050

MEAN- 1179,15

$1"1) - 58,47

II Monte Carlo Simulation

]"0- Normal Dislrlbullon

916 947 977 I00_ 1039 1061 IllO I1_10 1161 Ilql 1222 125.1 12N3 I.II4 1.144 1.175 1405

Dimensionless Eigenfrequency

(a) M(mte Carh, Sil,ullali(m

.2

2"
i
0_

2'

eL=

&OE-03

ZOE-03

6.0E-03

5.0E-03

4,0E-03

3.0E-03

2.0E-03

LOE-03

O.OE+O0

900.0

-- Monte ('arlo Simulation

Delerminlstlc: -¢'-- Sensitivity-Based MCS

1181.20 _ ---Pmbabilistic _I-.A

Probabllislic: / \

c.o.v. : 0.050 /
MEAn- 117_.1._ / \

1000`0 1100.0 1200.0 1300.0 1400.0

Dimensionless Eigenfrequency

(b) All three methods u_d here

Figure 6.18: Probability density function of the dimensionless eigenfre(luency, A, for a

simply-supported laminated beam ([0 °/90 °/90 °/00]) with uncertain Young's moduhts in
the x-direction.



6.3. RELIABILITY ANALYSIS 172

6.2.3 Laminated Beams: Uncertain Ply Angles

We also considered the cases when the ply orientations may become uncertain. For

this case we studied several laminated composites such as sandwiched laminas with

a layout of [0°/O/0/0°], for all 0 = 30 °, 90 °. Figures 6.19-6.22 show these results.

In all three models, the mean values and the coefficient of variations were close.

However, the probabilistic finite element analysis and the Sensitivity Based-Monte

Carlo Simulation are conservative in the sense that both of them overestimate the

variation of the natural frequencies. Exact Monte Carlo Simulations would have

been the most accurate approach but also a very expensive one. Therefore, the

probabilistic finite element analysis can be safely used. The Sensitivity-Based MCS

is an alternative approach that produces fairly good results and saves time. This

approach produces very good results for only one thousand samples as opposed to

ten thousand samples employed in the exact MCS.

It should be noted that the results presented by Kapania and Goyal (2002) had

a better correlation among the three models. The reason is that in their work they

considered ply variations between -5 ° and 5° only. Here we have decided to use

the full spectrum of the data. However, in both cases it can be shown that the

ply angle uncertainties can play an important role in affecting free vibrations of

symmetrically and unsymmetrically laminated beams.

6.3 Reliability Analysis

In any given problem the variations may be highly significant or they may be

insignificant. It is important to have an idea of their magnitudes. Sometimes this

information is unknown and we use safety factors to overcome our lack of knowledge.

In the sense of structural stability, a structure is safe only if the actual load applied
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to the component does not exceed the critical load. In the traditional method, the

degree of safety is usually expressed by the safety factor, SF, and is defined as

SF = (6.9)
P

The factor of safety is used with the following criterion in mind: if SF -- 1 then

the structure is on the point of failure; if SF < 1 then the structure is in a failed

state; and if SF > 1 then the structure is considered safe.

A higher value of the safety factor seems to indicate a safer component. However

this is not necessarily the case as the inevitable variations must be kept in mind.

Let us consider the case of a structure having a critical load of P_ and the nominal

values of P = P_/SF. Now because of the inherent imperfection in the structure,

let the probability density functions of the dimensionless critical load be f(£), as

shown in Figure 6.23. It is our goal to find the probability of failure for a structure

designed for various safety factors, i.e., ._1 = _./SF.

In the present work, we calculate the normal distribution functions by using

either the Exact MCS, sensitivity-based MCS, or the probabilistic FEA. It should

be noted that we have assumed that the buckling loads obey a normal distribution,

although in some cases this might not be true. Now we study the probability of the

structure to fail under a given factor of safety. Let the probability density function

have a mean #p and a standard deviation ap. The probability of failure is then

evaluated as follows:

fpf = (6.10)
C¢

The reliability of the system is defined as 1 - p/.
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6.3.1 Conservative Case

We first study the influence of having an uncertain dimensionless Young's modulus,

nx_, on the buckling of isotropic beams. Next, we study how the stability of various

laminated beams is affected by uncertainties in n_x and ply angles. For the case of

conservative buckling analysis, the critical load occurs when the eigenfrequency is

zero. Thus the sensitivity derivatives of the buckling load simplify to

{¢kO}T [L0] {¢_} (6.11)

P_,_ = {dpO}T [KI]] {,o}
{_bO>T [L0] {q_Ok} (6.12)

For the case of isotropic beams, it was found that the dimensionless Young's

modulus in the x-direction does affect the dimensionless buckling load, although

the variation is small. The variation of the dimensionless buckling load is shown in

Figs. 6.24, 6.26, and 6.27. For the case of a fixed-fixed isotropic beam, the variations

in the buckling load are most critical.

We also studied various cases of unidirectional cantilevered laminated beams

with a ply angle of 0°. Figures 6.28 and 6.29 show that ply angle variations signif-

icantly affect unidirectional laminated beams when compared to variations in the

dimensionless Young's modulus in the x-direction. Also, it was found that E_x had

no influence whatsoever on the buckling load of unidirectional laminated beams

with a ply angle of 90 °. A similar trend was found for all other unidirectional

laminated beams.

The probability of failure for a cantilevered isotropic beam with uncertain

Young's modulus in the x-direction is shown in Fig. 6.25. The reliability of the

structure is shown as a second figure to all the cases mentioned above.



6.3. RELIABILITY ANALYSIS 180

When performing the reliability analysis for all the conservative cases studied

here, results showed that, for the uncertainties considered here, the structure is

reliable when it is designed for a safety factor of 1.5, a value traditionally used

in aerospace design. Thus, when uncertainties in ply orientations and Young's

modulus in the x-direction affect the laminated beams, the structure can be safely

modeled using deterministic approaches.

6.3.2 Nonconservative Case

For the nonconservative problem, we find the critical load such that the first two

eigenfrequencies coalesce, known as flutter point. At the onset of flutter we know

that
dP -0 (6.13)
dAk

Recall that the zeroth order eigenvalue problem, given by Eq. (5.16), is defined as

[K o _ poLo _ )_OM0 ] {¢o} = 0 (6.14)

Now premultiplying the above equation by the left eigenvector and solving for the

critical load, we get

pO = {¢O}T [g o] {¢_} _ A ° {_/j_}T [M o] {_bo} (6.15)
{¢_}T [L o] {¢_} {¢_}T [L o] {¢_}

By virtue of Eq. (6.13), at the onset of flutter

{¢_}T [M 0] {4)o} = 0 (6.16)
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Thus the equations for the sensitivity derivatives for the critical load at the onset

of flutter become

P_ = {¢O}T [K_] {_o)
[Lo]{Vo}

P_k,_ = {,0}T [K_]] {,o)
{¢O}T [L 0] {_b_} (6.18)

where the left and right eigenvectors, and the stiffness derivatives, are evaluated at

the onset of flutter using the mean values of the random variables.

Figure 6.30 shows the variation in the critical load, which occurs at flutter,

for a purely tangential follower load. Results show that isotropic beams under

nonconservative loading also have a small probability of failure. For the laminated

beams, shown in Figs. 6.31 and 6.32, the structure will be reliable when it is designed

for a safety factor of 1.5, a value traditionally used in aerospace design.

Thus, as was the case for conservative loading, the laminated beams can be

modeled using deterministic approaches for the type of uncertainties considered

here.
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Figure 6.27: Probability density function of the dimensionless buckling l()+_(l, /5, and

the structure's reliability for a simply-supported isotro])ic beam with uncertain Young's
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Figure 6.30: Probability density function of the dimensionless buckling load, /5 and the

structure's reliability for an isotropic cantilevered t)e_tlll with uncertain Young's modulus

under a purely tangential follower load.
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Chapter 7

Concluding Remarks

Fiber-reinforced laminated composites have found widespread use in aerospace

engineering. Moreover, these composites can exhibit a considerable variation in

their material properties because their manufacturing process involves a number of

parameters that may not be fully controllable.

In the aerospace industry, the stability analysis of laminated composite struc-

tures is extremely important. In this work, we have studied the stability of lami-

nated structures subject to subtangential loading using the dynamic criterion. We

also studied the influence of uncertain ply orientations and uncertain axial Young's

modulus on the stability of these laminated structures.

In this chapter, we intend to present our final remarks for the deterministic

analysis as well as the probabilistic one. The last section is devoted to present

various topics to which this work can be extended.

7.1 Deterministic Response

A twenty-one degree of freedom laminated beam element has been developed for the

one-dimensional analysis of symmetrically and unsymmetrically laminated compos-

ites. The element has the following features: use of symbolic integration, all three

displacements (axial, transverse, and lateral), torsional and warping effects, inplane

rotation, and shear rotation. Here we used the simplest possible warping function,

191



7.2. RESPONSE OF UNCERTAIN LAMINATED BEAMS 192

one that would satisfy the classical laminate theory. The entire derivation is pre-

sented in its dimensionless form, which often results in a computationally robust

approach. An advantage of this method is that the coefficients of the stiffness

matrix are of the same order. The same is true for the mass matrix.

The element takes into account the various couplings that affect laminated com-

posites, such as inplane shear and twisting rotation. Although the inertia due to

shear rotation is usually small, its relevant contribution to the mass matrix has

been derived.

Results for free vibration and buckling are in good agreement with those in

the literature. It was also shown that for unidirectional laminated beams, warping

cannot be ignored unless the laminate is made entirely of 0° or 90 ° plies. Although

the natural frequencies may increase by almost 30% when not including warping,

the first two vibration and buckling mode shapes remain unchanged. However, a

more accurate function should be derived for thin-walled beam cells.

When the structure is subject to a subtangential load, the value of the non-

conservative parameter 77 becomes very important in design. The reason is that

by knowing how nonconservative the load is, one can predict if the instability will

occur due to divergence or flutter. In the case of isotropic and laminated beams

with constant cross section, and in the absence of damping, all value of _?< 0.5 will

be governed by divergence instability, and by flutter instability otherwise.

7.2 Response of Uncertain Laminated Beams

Monte Carlo Simulation has been applied to laminated beams with randomness in

ply orientation and the modulus of elasticity in the x-direction to study their effect
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on the free vibration and stability of the structure. At least ten thousand realiza-

tions of the Monte Carlo sampling have been performed to improve the accuracy of

the analysis. A second-order Sensitivity-Based Monte Carlo Simulation (SBMCS)

has been developed using perturbation methods. Using Taylor Series expansion,

the eigenvalues have been expressed as probabilistic quantities. The accuracy of

the free vibration and stability response has been compared to that obtained by

the Exact Monte Carlo Simulation. A third approach, called the probabilistic finite

element approach (PFEA), was also developed. It gave results that were in good

agreement with those given by SBMCS and gave a very good prediction of the

behavior of the fundamental natural frequency in the presence of uncertainties in

ply angles and in Young's modulus in the x-direction.

The two methods employed, SBMCS and PFEA, are advantageous over simula-

tion techniques, such as MCS, because the eigenvalue problem is solved only once.

Also, an elegant way to obtain sensitivity derivatives was used. Based upon the

results, the SBMCS and PFEA result in a great computational saving when one

is interested in predicting the statistics of the fundamental natural frequency of

laminated beams. As an example, the MCS for the case of nonconservative loading

took about 9-10 hours whereas the other two methods took about one minute.

For the case of free vibration, it was observed that variations in the modulus of

elasticity in the x-direction has a greater influence over the variation in eigenfre-

quencies when compared to the effect of uncertain ply angles. We also performed

the reliability of beams under uncertainties in ply angles and the Young's modulus

in the x-direction. The reliability analysis showed that for the types of problems

solved in this dissertation, a deterministic approach, using the traditional safety

factor of 1.5, would have been sufficient.
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7.3 Future Work

Nowadays, commercial codes such as ABAQUS are capable of analyzing the sta-

bility of laminated structures including various types of nonlinearities. One of the

greatest features that exists in ABAQUS is that one can employ one's own element

to analyze problems. It is suggested that the present formulation, and/or future

formulations, be modified such that they can be integrated into ABAQUS. The

drawback is that it does not have the capability to perform probabilistic analysis.

As a future study, one could develop a computer program that would work as an

interface to ABAQUS to analyze uncertain systems.

The present work assumed that the type of laminated structures to be analyzed

could be modeled using a one-dimensional model. However, real structures may

be too complex to be modeled as beams. Thus a more rigorous study should

expand the present study using plate and shell theory. In doing so, one can perhaps

model and study a wide class of wings. Moreover, the use of a higher order theory

will not require the approximations for the shear correction factors. Thus it is

suggested that the present formulation be extended by using a higher order plate

and/or shell theory. The present work has shown the importance of the warping

effect in laminated structures. However, it is suggested that the structural model

be improved by taking into account more accurate warping terms (Librescu and

Khdeir, 1987).

We only performed linearized stability analysis. However, post-buckling analysis

can give us more information about the stability of the structure. The formulation

for the post-buckling analysis has been included but not used because it was beyond

the scope of this work. It would be most interesting to see how uncertainties affect

the post-buckling behavior of laminated structures.

When analyzing uncertain structures, creating a proper sampling for the purpose
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of Monte Carlo Simulation is an extremely important step. Some researchers have

developed new and better methods for creating these samplings than those used in

this dissertation. Among these methods is the Latin Hypercube Sampling, widely

used at Sandia Laboratories (Wyss and Jorgensen, 1998). Thus it is recommended

that these new methods of generating appropriate samples be integrated into the

analysis of uncertain systems.

In this work, we have assumed that the laminae parameters are spatially uncor-

related. However, the laminae parameters in real problems may be spatially cor-

related. Spatially correlated random variables are those whose randomness varies

from point-to-point in the structure, whereas spatially uncorrelated random vari-

ables are those whose uncertainty is the same at any given point in the structure.

Only a few researchers have studied the effect of having random parameters spa-

tially correlated. Singh and Abdelnaser (1992) used a generalized modal approach

to solve the equations of motion of a laminated composite beam, and calculated the

random response of beams subjected to temporally and spatially correlated loads.

Elishakoff et al. (1995) developed an exact solution to the bending of a beam with

spatially correlated stochastic stiffness. However, no work has been found on the

effect of spatial correlation of laminae parameters on the stability of laminated

nonconservative systems. Thus, it is suggested that such work be pursued.

Structures in general are made of viscoelastic materials. In fact, viscoelasticity

can be an important factor in laminated composites (Hammerand, 1999). Moreover,

damping may have a strong effect in the stability of laminates structures subject

to subtangential loading. Thus it is recommended that the present analysis be

extended to the inclusion of viscoelastic, or damping, effects.

We assumed that the uncertain parameters can be treated as random variables

with known (or assumed) probability distributions. However, is some cases this may

not be true. The uncertainty, in general, is due to imprecise information and/or
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the fact that statistical data cannot be obtained. Thus it is suggested that non-

probabilistic approaches, such as fuzzy sets, be considered (Chen, 2000; Elishakoff

et al., 2001).

The work done in this dissertation can be applied to the design of laminated

composite beams by preforming a reliability assessment of structures (Ang and

Tang, 1984; Warren, 1997; Haldar and Mahadevan, 2000b). This will enable us to

determine how critical the variations in the mechanical and geometrical properties

are to the structure's reliability. Thus it is also recommended that the design of

laminated structures be performed using a reliability based optimization (Ba-abbad

et al., 2002).



Appendix A

Strain-Gradient Matrix

Expressions

as

In chapter 2 expressions for the Green-Lagrange strain components were given

1

el _- exx --_ gl + -_ (g2 + g2 _}_g2) (A.la)

1

1

e3 = e_z = g9 + _ (g7 + g_ + g_) (A.lc)

e4 = 2e_ = g6 + g8 + g4g_ + gsg8 + g6g9 (A.ld)

e5 = 2exz=g3+gT+glgT+g2gs+gag9 (A.le)

e6 = 2ex_ = g2 + g4 + gl g4 + g2 g5 + g3 g6 (A. lf)

and were rewritten in the quadratic form

1 gT Hi g (A.2)
e, = hTg+

where the displacements gradients in vector form are

gT=( gl g2 g3 ga g5 g6 g7 g8 g9 } (A.3)
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The vectors h_'s are sparse 9 x 1 vectors:

__-{lOOOOOOOO}

__-{o o o o 1 o o o o}

_={ooooooool}

_:={o o ooo , o _ o}

h_={oo , ooo 1 o o}

_={o , o , oooo o}

The matrices H_'s are very sparse 9 x 9 symmetric matrices:

Hi

100000000

010000000

001000000

000000000

000000000

000000000

000000000

000000000

000000000

, H2 =

000000000

000000000

000000000

000100000

000010000

00O0O1O00

000000000

000000000

000000000
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H 3 _-

n 5 _-

000000000

000000000

000000000

000000000

000000000

000000000

000000100

000000010

000000001

000000100

000000010

000000001

000000000

000000000

000000000

100000000

010000000

001000O0O

, H4 =

, H6 :

000000000

000000000

000000000

000000100

000000010

0OOOOOOO1

O001O0O00

000010000

000001000

000100000

000010000

000001000

100000000

010000000

0O1OOOO0O

000000000

000000000

000000000
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Laminate Constitutive Equations

In chapter 2, the laminated constitutive equations were discussed. Here the

coefficients for this matrix are obtained with the help of the symbolic manipula-

tor program MATHEMATICA. Also, the coefficients used to calculate the shear

correction factor are also presented.

B.1 Stress-Strain Relationship

The materials considered in the present task obey Hooke's Law:

S_j = Ci_kl ekL (B.1)

where Si_ are the Cauchy's stress components, C_jkl the 81 independent elastic

constants, and ekl the infinitesimal strain components. Symmetry due to moment

equilibrium (Sij = Sji) and symmetry in the infinitesimal strains (eij= e_i) reduces

material coefficients from 81 to 36 independent coefficients. Hyperelastic materi-

als, for which an elastic potential or strain energy density function exists, have

incremental work per unit volume of dW = Sjdej. This leads to

d2W d2W

de i dei Ci3 de_ dej Cji (B.2)

Thus the material coefficients are symmetric, leading to 21 independent elastic

constants (triclinic material). The stress-strain relationship can be further reduced
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to 13 independent elastic constant if one plane of symmetry exists (monoclinic

material). When two mutually orthogonal planes of material symmetry exist, the

stress-strain relationship reduces to 9 independent elastic constants (orthotropic

material).

After considering a state of plane stress and condensing out e_z from the stress-

strain relationship, Eq. (B.1) becomes

Sij = Qijkl ekt (B.3)

or in indicial notation

Si = Qijej i,j = 1,2,4,5,6 (B.4)

Further, these stresses can be rotated about an arbitrary angle 0 and expressed in

terms of the invariant stiffness coefficients as follows (Jones, 1999)"

Qll = u1 + u2 cos(26) + u3 cos(ae)

Q12 = U4 - U3cos(40)

U2 sin(20) + 2Ua sin(40)
Q16 =

2

Q22 = U1 - U2 cos(20) + U3 cos(4e)

U2 sin(20) - 2Ua sin(40)
Q26 =

2

Q66 = u_ - 0"3cos(40)

Q44 = U6 + U7cos(20)

Q45 = -07 sin(20)

Q_5 = Us - U7cos(20)
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The invariant stiffness coefficients are defined as follows:

3Qn + 3Q22 + 2Qn + 4Q66
u_ =

8

QH - Q_2
U2 -

2

Qn + Q2_ - 2Q1_ - 4Q_
u3 =

8

Qn + Q22 + 6Qn - 4Q66
U4 =

8

Qn + Q22 - 2Qm + 4Q_6
u5 =

8

Q44 + Q_5
u6 -

2

Q44 -- Qss
u7 =

2

The integration of these stresses results in the extensional, extensional-bending,

and bending stiffness matrices. These are implemented into the FORTRAN code

as follows:

SUBROUTINE compositel(ielm, Nlam, Exx, Eyy, nuxy,

& nuyx, Gyz, Gxy, Gxz, aug, zk, thick,

A, B, D)

rl, r2,

IMPLICIT none

DOUBLEPRECISION, PARAMETER :: zero=O.OD+O, one=1.0D+O, TOL=I.0D-7

DOUBLEPRECISION, PARAMETER :: TOL2=I.OD-IO

INTEGER, INTENT(IN) :: ielm, Nlam

INTEGER :: ii, jj, kk

Material properties

DOUBLEPKECISION, INTENT(IN) :: Exx(Nlam), Eyy(Nlam), nuxy(Nlam),

& nuyx(Nlam), Gyz(Nlam), Gxy(Nlam), Gxz(Nlam),

& ang(Nlam), zk(Nlam+l), thick, rl, r2

DOUBLEPRECISION :: COS2ang, COS4ang, SIN2ang, SIN4ang
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! I

DOUBLEPKECISION :: zkl, zk2, zk3

Laminated beam characteristics

DOUBLEPRECISION :: Qll, Q22, Q66, Q12,

DOUBLEPRECISION :: ul, u2, u3, u4, uS,

DOUBLEPKECISION :: Qb(5,5), Qbbl(5,5),

A,B,D matrices

DOUBLEPRECISION, INTENT(OUT) :: A(5,5),

Q44, Q55

u6, u7

Qbb2(5,5)

B(3,3), 0(3,3)

!!!!!!!!!!!!!!!!!!!!!f!!!!!!!!

! Initializing matrices: !

l A, B, D, Qb I

! and A44,A45,A55 i

1!!1!!!!!!!1!!!!!!!!!!!!!!!!!!

Do jj=l,5

Do kk=jJ ,5

A(jj ,kk) = zero

Qb(jj,kk) = zero

If (jj<=3 .and. kk<=3)then

B(jj ,kk) = zero

D(jj ,kk) = zero

EndIf

EndDo

EndDo

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

t !

! Calculation of A, B, D, !

.!!!!!!!!!!!!!!!!!!!J!!!!m!lJl

Do ii=1,Nlam

!.!!!!.!!!!!!!!!!!!!!!!!I!

' Qij !

!!!!!!!!!!!!!!!!!!!!!!!!!!

QII = Exx(ii)/( one - one*nuxy(ii)*nuyx(ii) )

QI2 = Eyy(ii)*nuxy(ii)/( one - one*nuxy(ii)*nuyx(ii)
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Q22 = Eyy(ii)/( one - one*nuxy(ii)*nuyx(ii) )

Q44 = Gyz(ii)*one

Q55 = Gxz(ii)*one

Q66 = Gxy(ii)*one

!!!!!!!!!!!!!!!!!!!!!!!!!!

! ui i

!!!!!!!!!!!!!!!!1!!1111!!!

ui=I 3.0DO*OIl + 3.0DO*Q22 + 2.0DO*Oi2 + 4.0DO*Q66 )/8.0DO

u2=C Q11 - Q22 )/2.0DO

u3=I Oli+ 022 - 2.0DO*Of2 - 4.0DO*Q66 )/8.0DO

u4=I QII + 022 + 6.0DO*QI2 - 4.0DO*Q66 )/8.0DO

u5=I Oll+ Q22 - 2.ODO*Q12 + 4.0DO*Q66 )/8.0DO

u6=_ 044 + 058 )/2.0DO

uT=_ 044 - 055 )/2.0DO

!!!.!!!!!!!!!!!!!!!!!!!!!!

! t

! Qbar !

!!!!!!!!!!!!!!!!!!!!!!!!!!

COS2ang = dcos(2.0DO*ang(ii))

COS4ang = dcos(4.0DO*ang(ii))

SIN2ang = dsin(2.0DO*ang(ii))

SIN4ang = dsin(4.0DO*ang(ii))

Qb(1,1) = ul + u2*COS2ang + u3*COS4ang

Qb(1,2) = u4 - u3*COS4ang

Qb(1,3) = ( u2*SIN2ang + 2.0DO*u3*SIN4ang )/2.0DO

Qb(2,2) = ul - u2*COS2ang + u3.COS4ang

Qb(2,3) = ( u2*SIN2ang - 2.0DO*u3*SIN4ang )/2.0DO

Qb(3,3) = u5 - u3*COS4ang

Qb(4,4) = u6 + u7*COS2ang

Qb(4,5) = - u7*SIN2ang

Ob(5,5) = u6 - u7*COS2ang

!!!!!!!!!!!!!!!!!!!!!!!!!!

! A, B, D
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!Y!!!!!!!!!!!!!!!!!!!!!!!!

zkl = zk(ii+l)-zk(ii)

zk2 = ( zk(ii+l)**2 - zk(ii)**2 )/2.0DO

zk3 = ( zk(ii+l)**3 - zk(ii)**3 )/3.0DO

Do jj=l,3

Do kk=jj ,3

A(jj,kk) = A(jj,kk) + Qb(jj,kk)*zkl

B(jj,kk) = B(jj,kk) + Qb(jj,kk)*zk2

D(jj,kk) = D(jj,kk) + [_b(jj,kk)*zk3

if (ii == Nlam)then

if(dabs(A(jj,kk)) <= TOL ) A(jj,kk)=zero

if(dabs(B(jj,kk)) <= TOL ) B(jj,kk)=zero

if(dabs(D(jj,kk)) <= TOL ) D(jj,kk)=zero

A(jj,kk) = A(jj kk)/(Eyy(1)*thick)

B(jj,kk) = B(jj

D(jj,kk) = D(jj

A(kk,jj) = A(jj

B(kk,jj) = B(jj

D(kk,jj) = D(jj

Endlf

EndDo

EndDo

A(4,4) = A(4,4)

A(4,5) = A(4,5)

A(5,5) --A(5,5)

+ Qb(4,4)*zkl

+ Qb(4,5)*zkl

+ Qb(5,5)*zkl

kk)/(Eyy(1)*thick**2)/rl

kk)/(Eyy(1)*thick**3)/rl**2

kk)

kk)

kk)

if(ii == Nlam)then

if(dabs(A(4,4)) <= TOL ) A(4,4)=zero

if(dabs(A(4,5)) <= TOL ) A(4,5)=zero

if(dabs(A(5,5)) <= TOL ) A(5,5)=zero

A(4,4)=A(4,4)/(Eyy(1)*thick)

A(4,S)=A(4,S)/(Eyy(1)*thick)

A(5,S)=A(5,S)/(Eyy(1)*thick)

A(5,4) = A(4,5)

EndIf

EndDo

return

END SUBROUTINE compositel
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B.2 Equivalent Bending-Stiffness Matrix

The bending-stiffness matrix De is partitioned as follows:

[[DI,I DI,II]

De= ][DII,I nII,IIJ [0]

[

where DI,I corresponds to the strains

condensing out, and DI,II the coupling

(B.5)

we are keeping, DII,II the strains we are

between these:

DI,I =

All Aa6 Bll B16

AI_ A_ B16 B_

Bll B16 Oll D16

B16 Bs6 O16 D66

DI,II =

A12 B12

A2, B26

Ba2 D12

B26 D26

= DI],I

A22 B22 ]DII,II = B22 D22

The reduced form of the first submatrix in the bending-stiffness matrix is calculated

a,s

DR = DI,I - DI,II D -lII,II Dii,i (B.6)
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Using the above expression, an equivalent bending-stiffness matrix Dc for a

unsymmetrically laminated beam is found:

DC

Dc,l Dcl2 Dcl3 Dc14 0

D_12 Dc22 D¢23 Dc24 0

Dc13 D_23 D_33 D_34 0

D_I_ D_ De3, D_, 0

0 0 0 0 /<8 D_s5

(B.7)

The coefficients of the above matrix are given in their analytical form. Following

is the subroutine included in the FORTRAN program NLbeam21.fl:

SUBROUTINE DcMatrix(A, B, D, rl, r2, ShearFac, Dc)

IMPLICIT none

DOUBLEPRECISION, PARAMETER :: zero=O.OD+O, one=l.OD+O,

& TOL=I. OD-7

INTEGER :: ii, jj, kk

DOUBLEPRECISION, INTENT(IN)

D(3,3), rl, r2

DOUBLEPKECISIGN, INTENT(OUT)

DOUBLEPKECISION :: delta

:: ShearFac,

:: Dc(5,5)

A(5,5), B(3,3),

Initializing matrix Dc

delta = B(2,2)*.2 - A(2,2)*D(2,2)

Dc(1,1) = ( A(2,2)*B(1,2)**2 -

& 2. ODO*A(1,2)*B (1,2)*B (2,2) +

& A(1,1)*B(2,2)**2 + A(1,2)**2*D(2,2)

*Note that all "3" indices in the A, B, D matrices represent "6", i.e., A(1, 3) _ A16.
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&

Dc(1,2)

&

Dc(1,3)

&

&

&

Dc(1,4)

&

Dc(1,5)

Dc(2,2)

&

&

Dc (2,3)

&

Dc(2,4)

&

&

Dc (2,5)

Dc(3,3)

&

&

Dc(3,4)

&

&

&

A(1,1) ,A (2,2) ,D(2,2)

)/delta

= (-A(2,3)*B(1,2)*B(2,2) + A(1,3)*B(2,2)**2 +

A(2,2)*B(1,2)*B(2,3) - A(1,2)*B(2,2)*B(2,3) -

A(1,3)*A(2,2)*D(2,2) + A(1,2)*A(2,3)*D(2,2)

)/delta

= (-B(1,2)**2*B(2,2) + B(1,1)*B(2,2)**2 +

A(2,2).B(1,2).D(1,2)- A(1,2).B(2,2).D(1,2)-

A(2,2),B(1,1),D(2,2) + A(1,2).B(1,2).D(2,2)

)/delta

= ( B(1,3)*B(2,2)**2 - B(1,2)*B(2,2)*B(2,3) -

A(2,2)*B(1,3)*D(2,2) + A(1,2)*B(2,3)*D(2,2) +

A(2,2)*B(1,2)*D(2,3) - A(1,2)*B(2,2)*D(2,3)

)/delta

= zero

= ( A(3,3)*B(2,2)**2 -

2. ODO*A(2,3)*B (2,2)*B(2,3) +

A(2,2)*B(2,3)**2 + A(2,3)**2*D(2,2) -

A (2,2)*A (3,3),D (2,2)

)/delta

= ( B(I,3)*B(2,2)**2 - B(I,2)*B(2,2)*B(2,3) -

A(P-,3)*B(2,2)*D(I,2) + A(2,2)*B(2,3)*D(I,2) +

A(2,3)*B(I,2)*D(2,2) - A(2,2)*B(I,3)*D(P-,2)

)/delta

= ( -B(2,2)*B(2,3)**2 + B(2,2)**P-*B(3,3) +

A(2,3)*B(2,3)*D(2,2) - A(2,2)*B(3,3)*D(2,2) -

A(2,3)*B(2,2)*D(2,3) + A(2,2)*B(2,B)*D(2,3)

)/delta

= zero

= (B(2,2)**2*D(1,1) -

2. ODO*B(1,2)*B (2,2)*D (1,2) +

A(2,2)*D(1,2)**2 + B(1,2)**2*D(2,2) -

A(2,2),D(I, 1),D(2,2)

)/delta

= (-B(2,2)*B(2,3)*D(I,2) + B(2,2)**2*D(I,3) +

B(I,2)*B(2,3)*D(2,2)- A(2,2)*D(I,3)*D(2,2)-

B(I,2)*B(2,2)*D(2,3) + A(2,2)*D(I,2)*D(2,3)

)/delta
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Dc(3,5) = zero

Dc(4,4) = (B(2,3)**2*D(2,2) -

& 2.0D0*B (2,2)*B (2,3)*D (2,3) +

& A(2,2)*D(2,3)**2 + B(2,2)**2*D(3,3)

& A(2,2)*D (2,2)*D (3,3)

& )/delta

Dc(4,5) = zero

Dc(5,5) = ShearFac*( A(5,5)- A(4,5)**2/A(4,4))

Do ii=1,5

Do 3j=ii,5

if(dabs(Dc(ii,3j))

Dc(jj,ii)=Dc(ii,jj)

EndDo

EndDo

return

END SUBROUTINE DcMatrix

<= TOL ) Dc(ii,jj)=zero

B.3 Transverse Shear Coefficient Factor

In order to calculate the transverse shear strain energy density, we need to calculate

the following matrices and vectors laminawise. Thus here we present the final results

obtained using MATHEMATICA.

The A is a 4 x 4 matrix defined as

An(l,1) 0 A12(1,1) A12(1,2)

0 0 0 0

.&12(1,1) 0 -&22(1,1) .&22(1,2)

A_(t,2) 0 A_(1,2) h=(2,2)

(B.8)

Let Nla m be the total number of plies considered. Then the 2 × 2 matrix -&_i can



(_.9)
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._,_(1,2)= _ --
k=l

2 G k

)

2 ^k ^k

+ (zk+l - zk) \ 4Gk

_k ^k

+ 2G _ ,]

+ 4G k

8 G k 8 G k ]
^ 4 ^k ^k

16 G k 16 G k + 64 G k ] /
D33 D33

A22(1, 1)= E 4Gk
k=l

t -#
+ (zk+, - z,D ( h2_ b_= h_B_ b_

4 G k 8 G k +\

8G k ]

4 G _ ,]
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A2_.(1, 2) = E - ? 4G k
k=l

(%+ " ) t,- 2a_ -_ )

G k 4 G k

hD_ D_ h_D_D,%
G k + 8 G k

(h _Dl%D_ h_D_DI_++ (zk+l - zk) 4 G k + 16 G k

A22(2, 2) = z_+l._ z 913913
= 4 G k

+
+(z_+,;z_)rB,_B,_+_t, -a_ 2

+
+ (zk+l- zkl ()2

#,

4 G kk

hB1%D_

^k ^k
h Bla Daa

4 G k

+ 8 G k )
haD,%D_a

+ 8 G k )

16 G k

8G k )

4 Gk )
haD,%DI_

+
8 G k

64 G k

The ]B is a 4 x 1 vector defined as

{ 131(i) }
{o,)o= f3= = g2(1)

B2(2)

(B.IO)
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Then the 2 x 1 vector 13t can be defined as

-h/2

(B.11)

16 G k

2 ^k _k
h B;1 Dll' _

4 G k 8 G k )]

^ 4 ^k ^k ]
h3.4k, D k, h £_1_ff11_

16 G k + 64 G k ]

2G k ]
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)OllO1 k-_, ¥_

h J_k11 bk13

4 Gk

_,7d + 2a'

z_+, z_ (B,, B,_ hB;_b,_,
+ [ \ ?_ + 4a, +

(Z_+l;z_)(h_, B;_ h__ b,_,+ " G k 8 G k

+ (zk+,- z_) (
h 2

4 G k 16 G _

The C is a 1 x 1 matrix defined as

h 2 blkl blk3

h 3 .Slk3 Dlkl h 3 .Blkl blk3
+

16 G k

hi2

-h/2

(B.12)
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Tangent Stiffness Matrix

In chapter 3, the tangent stiffness matrix was derived and expressed using ma-

trices and vectors. However, by using the indicial notation, the stiffness matrices

are easier to implement in computer codes.

In indicial notation, the tensor or matrix components are explicitly specified.

Thus a vector, which is a first-order tensor, is denoted in indicial notation by x_,

where the range of the index is the number of dimensions of x, nsd. Indices repeated

twice in a term are summed, in conformance with the rules of Einstein notation. In

fact, the indicial notation is almost unavoidable in the implementation of FEM; for

programming the finite element equations, the indices must be specified (Belytschko

et al., 2000).

The virtual work done by internal forces can be written as

_Wint _ ///Sj _ej dF
(c.1)

where Sj are the dimensionless PK2 stresses and are energetically conjugate to ej,

which are the dimensionless Green-Lagrange strains.

Since the virtual displacements are defined in the same space of functions as

the finite element space of functions, the total virtual generalized strains can be

expressed in terms of the virtual dimensionless linear and nonlinear strains, in

215
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indicial notation, as follows:

c%j

5ej = N 5q, = B;_ 5qi

NL
= (B L+Bji ) 5qi

(c2)

(c.a)

j = 1,2,...,Nstr,ins i = 1,2,...,Ndof

where Nstrain 8 is the total number of generalized strains (N_t_ain_ = 5), Ndof is the

total number of degrees of freedom of the element (Ndof = 21), Bid the strain-

displacement matrix, B L the dimensionless strain-displacement matrix independent

on the displacements, and Sj NL the dimensionless nonlinear strain-displacement

matrix linearly dependent on the displacements.

get

Expressing Eq. (C.1) in terms of the generalized strain and stress vectors, we

_Wint _ off Tj (_Cj d_=_ j = 1, 2,..., gstrains (C.4)

fi

where Nstrain s is the length of the generalized strain vector and in this research it

is equal to five (Nstrains -_ 5), 5Ej are the dimensionless virtual generalized strains

given by Eq. (C.2), and T3 the generalized stresses given by Eq. (2.55). Using Eq.

(C.2), the internal virtual work becomes

-- ff Oej(_/Vint = (_qi _ Tj d_ (C.5)

fi

f!.t

Now, the tangent stiffness matrix is given by

K_ - O/¢"t - ff 02ejcgqk Oqi 8qk Tj
f_

dfi + f f oe¢ OT_Oqi Oqk
fl

df_
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where k = 1, 2,..., Ndof. Using the chain rule for the underlined term in the second

integral,

0T3 (0Tj) 0or 0¢r _a (C.6)Oq--'7 = _ _ = D_# cgq---_= D_ Brk

T3 = Dcj_¢_ (C.7)

Thus, the tangent stiffness matrix becomes

// OBsd //
e J*

K_+: = _ Tj d('t + 2 B L Dc_r B NL d_ (C.8)

fi fi

where

0s;i

=0

and is independent of displacements!

(c.9)

Thus, decomposition of the element tangent stiffness matrix can be written as

(C.10)

where Ki M, KDik, and K_ denote the element linear, initial-displacement, and geo-

metric stiffness matrices, respectively, where the above matrices are given by

lfl/2
KiM-_- JO J-1/2

JO J--I/2

B_ D_, B_ d_ d_. (C.11)

{2BL D_¢ B,.NL + BTL D_j, B NL} d_d2 (C.12)
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K_k = Jo J-1/2 Oqk
(C.13)

where Dcjr is the dimensionless equivalent bending-stiffness matrix.

Moreover, when nonconservative forces are present we have to add the loading

stiffness matrix to the global tangent stiffness matrix. This loading matrix can be

defined as

OfF (C.14a)
Oqtk

For the case of a beam subject to a tangential follower load,

Ki L = NLj, Oqt----_+ l_L_, Oqt---'-_qt_ + NL_ (_2_k (C.15a)



Appendix D

Dynamic Condensation Technique

Reduction methods have been studied and developed in the past decades. Noor

(1994) gave an extensive review on recent advances and application of reduction

methods.

Here we focus on the dynamic condensation technique, a technique not com-

monly used among researchers. The reason is that most of the problems of interest

are static and not dynamic. However, here we highlight one method of deriving the

dynamic condensation technique.

In order to proceed, the displacement vector is rearranged by partitioning the

relevant terms corresponding to external and internal degrees of freedom as follows:

qt, = {ql,q2} T (D.1)

where ql are the exterior nodes to be kept and q2 are the interior nodes to be

condensed. Now the load vector can be partitioned in a similar way:

F = {F1,F2} T (D.2)

The element stiffness matrix and mass matrix are also rearranged and partitioned

219
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according to Eq. (3.42) as follows:

K=[K11K12]K2_ K22

M = [ Mll M12 ]M21 M22

The following definitions are introduced:

(D.3)

(D.4)

ql = q (D.5a)

q2 = Rq+ E (D.5b)

where q is the displacement vector with only those displacements not to be con-

densed, e is the perturbation, and R is the matrix which allows the condensation

to take place. In order to find matrix R, Eq. (D.5) is substituted into the strain

energy

2Wint = qT [Kll1 q + erK22e + (D.6)

qT [RTK21 + K12R + RrK22R] q +

2e T [K21 + K22R] q

Now, the underlined term in Eq. (D.6) must vanish to decouple the variables q and

e for static problems. This is the basis for static condensation. This leads to an

expression for the matrix R:

R = -K22-_K2_ (D.7)

Since e is very small perturbation, its quadratic term in Eq. (D.6) is neglected.
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Further, substituting Eq. (D.7) into Eq. (D.6), we get

2Wint = QT [Kll + RTK21 + K12R + RTK22R] q

= qT [Kll - K12K2_-lK2,] q

It Tt,_ -TIE g -1g ]+qT [_K21TK2 -TK21 + _1 ,-_2 _-2_ 2_ 21J q

= - KI_K_2 K_I + qqT [Kll K21TK_2-TK21_ -1 K12K22-1K21]

_-- qT [Kll - KI_K22-1K21] q

Thus,

_a Kll - -I= KI2K2: K21 (D.8)

The dynamic condensation is performed by first defining the following matrix:

Q = (D.9)

where I is the identity matrix of same dimensions as R.

The reduced matrices are found then by using the following relationship:

_R = QTKQ (D.10)

_R = Qr F (D.ll)

_a = QTMQ (D.12)
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For example, the stiffness matrix is

KllKR=[I [ --K21TK22-T I K21 K22 -K22-1K21

_ -1K ]

Kll K12K22 21

=[I ] -K12K22 -1 ] K21 K22K22-1K21

-1K -1 -1 -1= Kll - K12K22 21-K12K22 K21 +K12K22 K22K22 K21

= Kll - K12K22-1K21

which gives the same as Eq. (D.8). A similar procedure can be followed for the

mass matrix and load vector matrix.
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Probabilistic Formulation

The approach involving the perturbation method was recently used by Zhang

and Ellingwood (1995). Haldar and Mahadevan (2000b) provide a good understand-

ing regarding stochastic finite element analysis (SFEA). Basically, the stochastic

finite element analysis relies on the fact that the sensitivity derivatives are known.

The present formulation for the probabilistic finite element analysis is similar to

that of SFEA. This usually leads to recursive equations that are solved sequentially

to obtain the variation of eigenfrequencies, eigenvectors, and buckling loads.

Eigenvalue derivatives

Let K be the probabilistic linear stiffness matrix, M the probabilistic mass matrix,

L the probabilistic loading matrix, Aa the probabilistic eigenfrequency of the k th

mode, Pk the probabilistic buckling load of the k th mode, ¢_ the probabilistic left

eigenvector of the k th mode, and _k the probabilistic right eigenvector of the k th

mode. Thus the probabilistic eigenvalue problem is expressed as

{¢k} T [K - Pk L - Ak M] = 0

[K - Pk L - Ak M] {¢k } = 0

(E.1)

(E.2)

As mentioned in chapter 5, all quantities in Eq. (E.2) are perturbed about their

mean value. Thus, they are expressed in terms of their mean-centered zeroth-,
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first-, and second-order rates of change with respect to the random variables as

described in section 5.2.2. Further let the first order rate of change of the k th mode

right eigenvector with respect to the ith random variable evaluated about the mean

be

°{¢k} L. ° = {¢'_,} (E.a)
¢0xi

and the second order rate of change of the k th mode right eigenvector with respect

to the ith and jth random variables evaluated about the mean be

02{Vk} o " (E.4)

Using the same notation for the eigenfrequencies and buckling loads, we can express

the following:

n n

K(rl, r2,..., r,_) = K ° + K_ ei + -_ l...., ij
i--1 i--1 j=l

(E.5)

M(rl,r2,... ,r,_) = M ° + E M_ e, + -_ M 0 eiej
i----1 i=l j-----1

(E.6)

L(rl,ra,...,r,) = L ° + L[ e, + -_ Liy eiei
i=l i=l j=l

(E.7)

n

n 1 n II

Ak(rl,ru,...,r_) = A° + EAIkie' + -_ E E AkiJ eiQ
i=I _=i j=l

(_.8)

n I 1 n n

i=1 i=l j=l

(E._)

n 1 '* '_

i=1 i=1 j=l

(E.IO)

After substituting these perturbations into Eq. E.2), a probabilistic eigenvalue
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problem is formulated (for simplicity, the perturbed eigenvectors were not substi-

tuted):

[ _ 1_ g 1{ tK ° + K_ ei + _ Ki i eiej ck_ =
i=1 i=1 j=l

i=l i=1 j=l

× M°+ Mlei + -_ Mij eie._ {_bk} (E.11)
i---1 i=l j=l

)pZ 1 H
+ P_ + ki ei + _ Pkij" eiej

i_-I i=1 j=l

1 __.,LlJeie¢ {Ok}× L°+ Lle +- 
_=1 i=l j=l

Further, we expand the above and equate all terms of ei in the expansion. The

uncertainties are in general sinai2 and, as a consequence, in the applied perturbation

technique it is sufficient to only consider up to second order terms. This leads to

=_ [K °- pOLO- X°M °] {¢k} (E.12)

-- Pkij L - PkiLj - PkjLi -- --k'ij J eiej Ck
i=l j=l

+ [--,.,kij.,,,* -- A_,iM _ - Ak_M i - AkM_ ] eie_ Ck = 0
i=1 j=l

Now substituting the perturbed eigenvectors, and keeping only second-order

terms, we get

[K ° - pOLO- ,k°M °] {4) ° }
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n

+ E [K°- poLo- A°M°] (4)_'} e_
i=1

.__ _-_ [g / 0 IpkLi _p_iL o A_iM o o I_ _ _ AkM,] {(P°}e,
i=1

n }2

+Z E [_,' o ,_ pkLi p_iL o A_M o o i- - - AkMi] {dp_j}e, ej
i=1 j=l

1 n n

+ __ _ [g°_ polo_ .h0Mo](Oi,'_}_,_j
i=l j=l

1 _-2_, _-_. [ II lI 0 _II II,4"0
+ "2,---,,--,LKi3 - Pk_ L - "'k_'-"

i=1 j=l

I I I I DOy.II I I I I 0 II]_ pkiL j _ PkjL i _ --k_iJ _ .hkiMj _ .hkjMi _ .hkMij {¢o} e_ej

We want the above expression to be valid for all small e. Thus we set the

coefficients of 5N (N = 0, 1, 2) to zero. Moreover, for the type of problem solved

throughout this dissertation, the loading and mass matrices do not depend on the

mechanical properties of the beam; as a consequence, their sensitivity derivatives

vanish. This leads to three recursive equations:

co: [K o _ pOLO _ .hOM o] {¢o} = 0 (E.13)

E 1 ' [g 0- polo- .hOM O] {(_Ii} (a.14)

+ [K_ - P_,L ° - .h_iM °] {d °} = 0

e2" [g[- P_L °- .h_M °] {_b_3} (E.15)

1

+2[g o poLo .hOMO ] H

1
Pk,jL - ,..k,_.._, j {dp°} = 0+ _ [K,(J- " o _. _ol
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Now premultiply Eqs. (E.14) and (E.15) by {¢O}T to get

el. {¢0}T [K o - poLo - AOMO] {q_}

+ {¢2°} T [K[ - P_,L ° - A_iM °] {_b°} = 0

(E.16)

e2" 2 {¢0}T [K_ - P_iL ° - A_iM °] {_b_y} (E.17)

+ {¢0}T [K° -- pOLO - A°M°] {¢ki_}H

+ {¢oV [KIj D. To . o- -_j._ - hk,jM ] {¢°}=0

Note that the present deterministic eigenvalue problem can be separated into two

eigenvalue problems:

{¢0} T [K ° - poLo - hOM °] = 0

[K o _ poLo _ hOM o] {¢o} = 0

where the loading matrix may be unsymmetrical. Since neither the left nor the

right eigenvectors are zero, [g °- pOLO- _k°M °] = 0. Thus the three recursive

equations become

_o. [K°- P°L°- h°M°l{¢°}=0k j (E.lS)

el: {¢O}T [K_ - P_L ° - h_iM °] {_:} = 0 (E.19)

e2: {¢_}T [KI}_ _I1 To II o.'k,_*: - hkijM ] {¢o} = (E.20)

_ {¢_}T [g / _ p_,L o _ h_iM o] {¢_j}

_ {¢O}T [g_ - P_L °- h_jM °] {¢_,}
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Eigenvector derivatives

The first-order variations in the eigenvectors can be obtained by using the method

described by Fox and Kapoor (1968). Murthy (1986) developed several methods

based on the generalized Rayleigh quotient for the sensitivity analysis of the eigen-

value problem. Later, Bergen and Kapania (1988), and Kapania et al. (1991),

presented a method for calculating the shape sensitivity of a wing aeroelastic re-

sponse with respect to changes in geometric shape. However, these methods are

restricted to buckling and/or eigenfrequencies. Plaut and Huseyin (1973), and re-

cently Adhikari and Friswell (2001), have studied the derivatives of the eigenvalue

problems for nonconservative systems. However, here we extend the method de-

scribed by Fox and Kapoor (1968) to nonconservative systems and to the stability

analysis using the dynamic criterion.

We calculate the left and right eigenvector sensitivities separately and use the

fact that the sensitivity derivatives of the mass and loading matrices are zero.

Since the right eigenvectors form a complete set of vectors, an eigenvector can be

represented by the linear combination of all other right eigenvectors. Thus the

derivative of the k th mode eigenvector with respect to the ith random variable

evaluated about the mean is represented as follows:

n

0{_bk} _,=_o = { _bt'} = Ea(_ {*J} (E.21)
_X/ j=l

where { _bj } is the eigenvector corresponding to the jth mode, and n corresponds to

the total number of modes (dimensions of the stiffness matrix). Thus the problem

reduces to calculating the coefficients a_.

Let us start with the following eigenvalue problem:

[K - Pk L - )_k M] {¢k} = 0 (E.22)
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Differentiating the above equation with respect to xi, a random variable, using

Eq. (E.21), and rearranging the terms, we get

TI

[K-PkL-AkM] Ea(ki_ {dp_} =- [K_- P_L- X_M] {dpk}

j=l

(E.23)

Premultiplying the above equation by the transpose of the left eigenvector, {_/_m} T,

we get
n

Ea_ {era} y [K- PkL- AkM] {¢_}
j=l (E.24)

-_ --{_)m} T [K_- pI, L- ,k_, M] {¢k}

To normalize the eigenvectors we need two independent criteria. Thus let us nor-

malize the eigenvectors such that

{¢3}T[M]{¢_}= 1 and {¢j}nthnonzeroelement -_- {¢j}nthnonzeroelemen t

for a selected value of n. As a result,

{¢_}T [K- Pk L] {¢y} = A3

Moreover, for distinct eigenfrequencies, the right and left eigenvectors satisfy biorthog-

onality criteria, i.e.,

{¢m}T[MI {¢j} = 0 {¢,_}TIK-PkLI{¢j}=O V m#j

Thus Eq. (E.24) becomes

r_

_-_a(, ) {¢j}T [K PkL-XkMI {¢j}kj
j---1 (E.25)

= _ {¢j}T [K[_P_iL_A_iM] {¢k}
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Using the biorthogonality criteria, the constants a(k_'s for all j ¢ k are found as

a_ = {¢j}v [K_- pIiL] {¢k} (E.26)
Ak - Aj

To find the constant -(_) '_aj3 _, we use the two normalization criteria defined above. Let

us take the derivative of the first normalization criteria with respect to a random

variable xi:

{¢_i}T[M] {¢3 } + {¢j}T Ml[ ,] {¢3} + {¢y}r[M] {¢_}

=0

= 0 (E.27)

Since the left eigenvectors form a complete set of vectors, the eigenvector can be

represented by a linear combination of all other eigenvectors:

?1

j=l

Substituting Eqs. (E.21) and (E.28) into Eq. (E.26), we get

a3j + b_j = 0 (E.29)

If the first element of the left and right eigenvector remain equal, then so do the

corresponding elements of the derivatives. Thus by differentiating the second nor-

malization criterion and using Eqs. (E.21) and (E.28), we get (Adhikari and Friswell,

2001):

ajj -- b33 = 0 (E.30)

Thus, ajj =- bjj = O.
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